72 resultados para pitching


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1998 Brock Badger men's baseball team photo. Front Row (L to R): Bill Gillen, Ryan Villers, Greg Arbour, Mark Cheeseman, Andrew Tinnish, Rick Bottomley, Matt Fletcher, Brad Namtzu, Darryl Presley, Dan Pino, Grant Giffen, Mike Caruso, Mark Reilly Back Row (L to R): Jeff Lounsbury (Head Coach), Jayar Green, Creston Rudolph, Ryan Fisher, Jamie Trull, Stefan Strecker, Andrew Robb, Jeremy Walker, Ryan Johns, Matt Stezycki, Steve Lester, Fabio Del Rio, Jarrod Haase, Jess Dixon, Rick Falconer (Pitching Coach) Absent: Marc Purdy, Ian Bala, Marc LePage (Asst. Coach), Waybe Briggs-Jude (Asst. Coach)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two black and white photographs of the Merritton Pen Centre Lions, dated 1960. One photograph is of the team, and the other one is of the pitching staff. The photograph of the team includes Bill Colbey (Lions Club), Jack McFadden, Bob Sunderland, Gary Blank, John MacDonald, John Davis (Coach), John Dempsey, Art Barclay, Frank Krsul, Percy Gilligan (Pen Centre), Terry Saxton, George Krusl, Dave Morris, Ian MacDonald (Mgr), Pete Holowchuk, Bernie Stubbert, Bill Hicks, Jim Thomson (Bat Boy), George Depitris (Property) and Charlie McGuire. Jim Hale is absent. The photograph of the pitching staff includes John Dempsey, Art Barclay and John MacDonald.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data Envelopment Analysis (DEA) is applied to Major League Baseball salary and performance data from 1985 to 2006 in order to identify those teams which produced wins most efficiently and the characteristics which lead to efficient production. It is shown that on average both National and American League teams over allocate the most resources to first basemen. Additionally, it is found that National League teams should allocate significantly more resources towards starting pitching while American League teams should allocate significantly more resources toward second base. It is also observed that efficient teams use younger less experienced players and employ rosters with a greater number of previous all star appearances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a time domain approach to the flutter analysis of a missile-type wing/body configuration with concentrated structural non-linearities. The missile wing is considered fully movable and its rotation angle contains the structural freeplay-type non-linearity. Although a general formulation for flexible configurations is developed, only two rigid degrees of freedom are taken into account for the results: pitching of the whole wing/body configuration and wing rotation angle around its hinge. An unsteady aerodynamic model based on the slender-body approach is used to calculate aerodynamic generalized forces. Limit-cycle oscillations and chaotic motion below the flutter speed are observed in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental and systematic investigation about how geometric parameters on a biplane configuration have an influence on aerodynamic parameters. This experimental investigation has been developed in a two-dimensional approach. Theoretical studies about biplanes configurations have been developed in the past, but there is not enough information about experimental wind tunnel data at low Reynolds number. This two-dimensional study is a first step to further tridimensional investigations about the box wing configuration. The main objective of the study is to find the relationships between the geometrical parameters which present the best aerodynamic behavior: the highest lift, the lowest drag and the lowest slope of the pitching moment. A tridimensional wing-box model will be designed following the pattern of the two dimensional study conclusions. It will respond to the geometrical relationships that have been considered to show the better aerodynamic behavior. This box-wing model will be studied in the aim of comparing the advantages and disadvantages between this biplane configuration and the plane configuration, looking for implementing the box-wing in the UAV?s field. Although the box wing configuration has been used in a small number of existing UAV, prestigious researchers have found it as a field of high aerodynamic and structural potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper provides a method applicable for the determination of flight loads for maneuvering aircraft, in which aerodynamic loads are calculated based on doublet lattice method, which contains three primary steps. Firstly, non-dimensional stability and control derivative coefficients are obtained through solving unsteady aerodynamics in subsonic flow based on a doublet lattice technical. These stability and control derivative coefficients are used in second step. Secondly, the simulation of aircraft dynamic maneuvers is completed utilizing fourth order Runge-Kutta method to solve motion equations in different maneuvers to gain response parameters of aircraft due to the motion of control surfaces. Finally, the response results calculated in the second step are introduced to the calculation of aerodynamic loads. Thus, total loads and loads distribution on different components of aircraft are obtained. According to the above method, abrupt pitching maneuvers, rolling maneuvers and yawing maneuvers are investigated respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A stress-wave force balance for measurement of thrust, lift, and pitching moment on a large scramjet model (40 kg in mass, 1.165 in in length) in a reflected shock tunnel has been designed, calibrated, and tested. Transient finite element analysis was used to model the performance of the balance. This modeling indicates that good decoupling of signals and low sensitivity of the balance to the distribution of. the load can be achieved with a three-bar balance. The balance was constructed and calibrated by applying a series of point loads to the model. A good comparison between finite element analysis and experimental results was obtained with finite element analysis aiding in the interpretation of some experimental results. Force measurements were made in a shock tunnel both with and without fuel injection, and measurements were compared with predictions using simple models of the scramjet and combustion. Results indicate that the balance is capable of resolving lift, thrust, and pitching moments with and without combustion. However vibrations associated with tunnel operation interfered with the signals indicating the importance of vibration isolation for accurate measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A force balance system for measuring lift, thrust and pitching moment has been used to measure the performance of fueled scramjet-powered vehicle in the T4 Shock Tunnel at The University of Queensland. Detailed measurements have been made of the effects of different fuel flow rates corresponding to equivalence ratios between 0.0 and 1.5. For proposed scramjet-powered vehicles, the fore-body of the vehicle acts as part of the inlet to the engine and the aft-body acts as the thrust surface for the engine. This type of engine-integrated design leads to a strong coupling between the performance of the engine and the lift and trim characteristics of the vehicle. The measurements show that the lift force increased by approximately 50% and centre-of-pressure changed by approximately 10% of the chord of the vehicle when the equivalence ratio varied from 0.0 to 1.0. The results demonstrate the importance of engine performance to the overall aerodynamic characteristics of engine-integrated scramjet vehicles and that such characteristics can be measured in a shock tunnel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel surrogate model is proposed in lieu of Computational Fluid Dynamics (CFD) solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by
a discrete empirical interpolation method (DEIM). The flow field is then reconstructed using a least square approximation of the flow modes extracted
by proper orthogonal decomposition (POD). The aeroelastic reduce order
model (ROM) is completed by introducing a nonlinear mapping function
between displacements and the DEIM points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using
a N ACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil
and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock-waves triggers the appearance of limit
cycle oscillations (LCO), which the model is able to predict. For all cases
tested, the new ROM shows the ability to replicate the nonlinear aerodynamic forces, structural displacements and reconstruct the complete flow
field with sufficient accuracy at a fraction of the cost of full order CFD
model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baseball-specific athleticism, potential, and performance have been difficult to predict. Increased muscle strength and power can increase throwing velocity but the majority of research has focused on the upper body. The present study sought to determine if bilateral or unilateral lower-body field testing correlates with throwing velocity. Baseball throwing velocity scores were correlated to the following tests: medicine ball (MB) scoop toss and squat throw, bilateral and unilateral vertical jumps, single and triple broad jumps, hop and stop in both directions, lateral to medial jumps, 10- and 60-yd sprints, and both left and right single-leg 10-yd hop for speed in 42 college baseball players. A multiple regression analysis (forward method), assessing the relationship between shuffle and stretch throwing velocities and lower-body field test results determined that right-handed throwing velocity from the stretch position was most strongly predicted by lateral to medial jump right (LMJR) and body weight (BW; R = 0.322), whereas lateral to medial jump left (LMJL; R = 0.688) predicted left stretch throw. Right-handed shuffle throw was most strongly predicted by LMJR and MB scoop (R = 0.338), whereas LMJL, BW, and LMJR all contributed to left-handed shuffle throw (R = 0.982). Overall, this study found that lateral to medial jumps were consistently correlated with high throwing velocity in each of the throwing techniques, in both left-handed and right-handed throwers. This is the first study to correlate throwing velocity with a unilateral jump in the frontal plane, mimicking the action of the throwing stride.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various parameters including the fins with variable span to chord ratio, curvature radius, and setting angle have been investigated between the flat fin and wrap around fin (WAF) rocket configurations at supersonic flow. The results show that under the same flight condition, the flat fins can provide a higher lift and pitching moments than the WAFs. Due to the symmetric effect, any extra side forces, moments as well as the self-induced rolling characteristics will be not generated as compared to the WAF configurations. The WAFs can greatly improve the longitudinal stability and enhance the longitudinal aerodynamic characteristics for the whole rocket. The static pressure distributions at different chordwise positions together with the force variations around the fins have been obtained computationally and analyzed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the immersed boundary method is applied to simulate incompressible turbulent flows around stationary and moving objects. The goal is to demonstrate that the immersed boundary technique along with a large eddy simulation approach is capable of simulating the effect of the so-called leading edge vortex (LEV), which can be found in flapping wing aerodynamics. A Lagrangian method is used to approximatethe solutions in the freshly cleared cells that lay within solid objects at one time step and emerge into fluid domain at the next time step. Flow around a stationary cylinder at ReD D 20, 40, and 3900 (based oncylinder diameter D) is first studied to validate the immersed boundary solver based on the finite volume scheme using a staggered grid. Then, a harmonically oscillating cylinder at ReD D 10 000 is considered to test the solver after the Lagrangian method is implemented to interpolate the solution in the freshly cleared cells. Finally, this approach is used to study flows around a stationary flat-plate at several angles of attack and fast pitching flat-plate. The rapidly pitching plate creates a dynamic LEV that can be used to improve the efficiency of flapping wings of micro air vehicle and to determine the optimum flapping frequency.