908 resultados para physiological reactivity
Resumo:
Principal neurons in the lateral nucleus of the amygdala (LA) exhibit a continuum of firing properties in response to prolonged current injections ranging from those that accommodate fully to those that fire repetitively. In most cells, trains of action potentials are followed by a slow after hyperpolarization (AHP) lasting several seconds. Reducing calcium influx either by lowering concentrations of extracellular calcium or by applying nickel abolished the AHP, confirming it is mediated by calcium influx. Blockade of large conductance calcium-activated potassium channel (BK) channels with paxilline, iberiotoxin, or TEA revealed that BK channels are involved in action potential repolarization but only make a small contribution to the fast AHP that follows action potentials. The fast AHP was, however, markedly reduced by low concentrations of 4-aminopyridine and alpha-dendrotoxin, indicating the involvement of voltage-gated potassium channels in the fast AHP. The medium AHP was blocked by apamin and UCL1848, indicating it was mediated by small conductance calcium-activated potassium channel (SK) channels. Blockade of these channels had no effect on instantaneous firing. However, enhancement of the SK-mediated current by 1-ethyl-2-benzimidazolinone or paxilline increased the early interspike interval, showing that under physiological conditions activation of SK channels is insufficient to control firing frequency. The slow AHP, mediated by non-SK BK channels, was apamin-insensitive but was modulated by carbachol and noradrenaline. Tetanic stimulation of cholinergic afferents to the LA depressed the slow AHP and led to an increase in firing. These results show that BK, SK, and non-BK SK-mediated calcium-activated potassium currents are present in principal LA neurons and play distinct physiological roles.
Resumo:
Cytosolic sulfotransferases are believed to play a role in the neuromodulation of certain neurotransmitters and drugs. To date, four cytosolic sulfotransferases have been shown to be expressed in human brain. Recently, a novel human brain sulfotransferase has been identified and characterized, although its role and localization in the brain are unknown. Here we present the first immunohistochemical (IHC) localization of SULT4A1 in human brain using an affinity-purified polyclonal antibody raised against recombinant human SULT4A1. These results are supported and supplemented by the IHC localization of SULT4A1 in rat brain. In both human and rat brains, strong reactivity was found in several brain regions, including cerebral cortex, cerebellum, pituitary, and brainstem. Specific signal was entirely absent on sections for which preimmune serum from the corresponding animal, processed in the same way as the postimmune serum, was used in the primary screen. The findings from this study may assist in determining the physiological role of this SULT isoform.
Resumo:
Microbial xylanolytic enzymes have a promising biotechnological potential, and are extensively applied in industries. In this study, induction of xylanolytic activity was examined in Aspergillus phoenicis. Xylanase activity induced by xylan, xylose or beta-methylxyloside was predominantly extracellular (93-97%). Addition of 1% glucose to media supplemented with xylan or xylose repressed xylanase production. Glucose repression was alleviated by addition of cAMP or dibutyryl-cAMP. These physiological observations were supported by a Northern analysis using part of the xylanase gene ApXLN as a probe. Gene transcription was shown to be induced by xylan, xylose, and beta-methylxyloside, and was repressed by the addition of 1% glucose. Glucose repression was partially relieved by addition of cAMP or dibutyryl cAMP.
Resumo:
The influence of the preparation method on the performance of RuO(2)-Ta(2)O(5) electrodes was evaluated toward the ethanol oxidation reaction (EOR). Freshly prepared RuO(2)-Ta(2)O(5) thin films containing between 30 and 80 at.% Ru were prepared by two different methods: the modified Pechini-Adams method (DPP) and standard thermal decomposition (STD). Electrochemical investigation of the electrode containing RuO(2)-Ta(2)O(5) thin films was conducted as a function of electrode composition in a 0.5-mol dm(-3) H(2)SO(4) solution, in the presence and absence of ethanol and its derivants (acetaldehyde and acetic acid). At a low ethanol concentration (5 mmol dm(-3)), ethanol oxidation leads to high yields of acetic acid and CO(2). On the other hand, an increase in ethanol concentration (15-1000 mmol dm(-3)) favors acetaldehyde formation, so acetic acid and CO(2) production is hindered, in this case. Electrodes prepared by DPP provide higher current efficiency than STD electrodes for all the investigated ethanol concentrations. This may be explained by the increase in electrode area obtained with the DPP preparation method compared with STD. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Asthma is characterized by pulmonary cellular infiltration, vascular exudation and airway hyperresponsiveness. Several drugs that modify central nervous system (CNS) activity can modulate the course of asthma. Amphetamine (AMPH) is a highly abused drug that presents potent stimulating effects on the CNS and has been shown to induce behavioral, biochemical and immunological effects. The purpose of this study was to investigate the effects of AMPH on pulmonary cellular influx, vascular permeability and airway reactivity. AMPH effects on adhesion molecule expression, IL-10 and IL-4 release and mast cell degranulation were also studied. Male Wistar rats were sensitized with ovalbumin (OVA) plus alum via subcutaneous injection. One week later, the rats received another injection of OVA-alum (booster). Two weeks after this booster, the rats were subjected to AMPH treatment 12 h prior to the OVA airway challenge. In rats treated with AMPH, the OVA challenge reduced cell recruitment into the lung, the vascular permeability and the cellular expression of ICAM-1 and Mac-1. Additionally, elevated levels of IL-10 and IL-4 were found in samples of lung explants from allergic rats. AMPH treatment, in comparison, increased IL-10 levels but reduced those of IL-4 in the lung explants. Moreover, the tracheal responsiveness to methacholine (MCh), as well as to an in vitro OVA challenge, was reduced by AMPH treatment, and levels of PCA titers were not modified by the drug. Our findings suggest that single AMPH treatment down-regulates several parameters of lung inflammation, such as cellular migration, vascular permeability and tracheal responsiveness. These results also indicate that AMPH actions on allergic lung inflammation include endothelium-leukocyte interaction mechanisms, cytokine release and mast cell degranulation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.
Resumo:
Rheumatic fever (RF) is an autoimmune disease caused by the gram-positive bacteria Streptococcus pyogenes that follows a nontreated throat infection in susceptible children. The disease manifests as polyarthritis, carditis, chorea, erythema marginatum, and/or subcutaneous nodules. Carditis, the most serious complication, occurs in 30% to 45% of RF patients and leads to chronic rheumatic heart disease (RHD), which is characterized by progressive and permanent valvular lesions. In this review, we will focus on the genes that confer susceptibility for developing the disease, as well as the innate and adaptive immune responses against S. pyogenes during the acute rheumatic fever episode that leads to RHD autoimmune reactions. The disease is genetically determined, and some human leukocyte antigen class II alleles are involved with susceptibility. Other single nucleotide polymorphisms for TNF-alpha and mannan-binding lectin genes were reported as associated with RF/RHD. T cells play an important role in RHD heart lesions. Several autoantigens were already identified, including cardiac myosin epitopes, vimentin, and other intracellular proteins. In the heart tissue, antigen-driven oligoclonal T cell expansions were probably the effectors of the rheumatic heart lesions. These cells are CD4(+) and produced inflammatory cytokines (TNF alpha and IFN gamma). Molecular mimicry is the mechanism that mediated the cross-reactions between streptococcal antigens and human proteins. The elucidation of chemokines and their receptors involved with the recruitment of Th1, Th2, and Th17 cells, as well as the function of T regulatory cells in situ will certainly contribute to the delineation of the real picture of the heart lesion process that leads to RHD.
Resumo:
Introduction. Advantages of the bicaval versus the biatrial technique have been reported, emphasizing atrial electrical stability and less tricuspid regurgitation. Objective. To analyze the impact of the surgical technique on long-term pulmonary pressures, contractility, and graft valvular behavior after heart transplantation. Methods. Among 400 orthotopic heart transplantation recipients from 1985 to 2010, we selected 30 consecutive patients who had survived beyond 3 years. The biatrial versus bicaval surgical technique groups included 15 patients each. Their preoperative clinical characteristics were similar. None of the patients displayed a pulmonary vascular resistance or pulmonary artery pressure over 6U Wood or 60 mm Hg, respectively. We evaluated invasive hemodynamic parameters during routine endomyocardial biopsies. Two-dimensional echocardiographic parameters were obtained from routine examinations. Results. There were no significant differences regarding right atrial pressure, systolic pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, cardiac index, systolic blood pressure, left ventricular ejection fraction, and mitral regurgitation (P > .05). Tricuspid regurgitation increased significantly over the 3 years of observation only among the biatrial group (P = .0212). In both groups, the right atrial pressure, pulmonary wedge capillary pressure, transpulmonary gradient, and pulmonary vascular resistance decreased significantly (P < .05) from the pre- to the postoperative examination. In both groups cardiac index and systemic blood pressure increased significantly after transplantation (P < .05). Comparative analysis of the groups only showed significant differences regarding right atrial pressure and degree of tricuspid regurgitation; the bicaval group showing the best performance. Conclusions. Both surgical techniques ensure adequate left ventricular function in the long term; however, the bicaval technique provided better trends in hemodynamic performance, as well as a lower incidence and severity of tricuspid valve dysfunction.
Resumo:
The optimal dosing schedule for melphalan therapy of recurrent malignant melanoma in isolated limb perfusions has been examined using a physiological pharmacokinetic model with data from isolated rat hindlimb perfusions (IRHP), The study included a comparison of melphalan distribution in IRHP under hyperthermia and normothermia conditions. Rat hindlimbs were perfused with Krebs-Henseleit buffer containing 4.7% bovine serum albumin at 37 or 41.5 degrees C at a flow rate of 4 ml/min. Concentrations of melphalan in perfusate and tissues were determined by high performance liquid chromatography with fluorescence detection, The concentration of melphalan in perfusate and tissues was linearly related to the input concentration. The rate and amount of melphalan uptake into the different tissues was higher at 41.5 degrees C than at 37 degrees C. A physiological pharmacokinetic model was validated from the tissue and perfusate time course of melphalan after melphalan perfusion. Application of the model involved the amount of melphalan exposure in the muscle, skin and fat in a recirculation system was related to the method of melphalan administration: single bolus > divided bolus > infusion, The peak concentration of melphalan in the perfusate was also related to the method of administration in the same order, Infusing the total dose of melphalan over 20 min during a 60 min perfusion optimized the exposure of tissues to melphalan whilst minimizing the peak perfusate concentration of melphalan. It is suggested that this method of melphalan administration may be preferable to other methods in terms of optimizing the efficacy of melphalan whilst minimizing the limb toxicity associated with its use in isolated limb perfusion.
Resumo:
Recent advances in computer technology have made it possible to create virtual plants by simulating the details of structural development of individual plants. Software has been developed that processes plant models expressed in a special purpose mini-language based on the Lindenmayer system formalism. These models can be extended from their architectural basis to capture plant physiology by integrating them with crop models, which estimate biomass production as a consequence of environmental inputs. Through this process, virtual plants will gain the ability to react to broad environmental conditions, while crop models will gain a visualisation component. This integration requires the resolution of the fundamentally different time scales underlying the approaches. Architectural models are usually based on physiological time; each time step encompasses the same amount of development in the plant, without regard to the passage of real time. In contrast, physiological models are based in real time; the amount of development in a time step is dependent on environmental conditions during the period. This paper provides a background on the plant modelling language, then describes how widely-used concepts of thermal time can be implemented to resolve these time scale differences. The process is illustrated using a case study. (C) 1997 Elsevier Science Ltd.
Resumo:
The metallic voice is usually confused with ring or nasality by singers and nontrained listeners. who are not used to perceptual vocal analysis. They believe a metallic voice results from a rise in fundamental frequency. A diagnostic error in this aspect may lead to lowering pitch, an incorrect procedure that Could Cause vocal overload and fatigue. The purpose of this article is to Study the quality of metallic voice considering the correlation between information of the physiological and acoustic plans, based on a perceptive consensual assumption. Fiberscopic video pharyngolaryngoscopy was performed on 21 professional singers while speaking vowel [e]-in normal and metallic modes to observe muscular movements and structural changes of the velopharynx, pharynx, and larynx. Vocal samples captured simultaneously to the fiberscopic examination were acoustically analyzed. Frequency and amplitude of the first four formants (F(1), F(2), F(3), and F(4)) were extracted by means of linear predictor coefficients (LPC) Spectrum and were statistically analyzed. Vocal tract adjustments such as velar lowering, pharyngeal wall narrowing, laryngeal rise, aryepiglottic, and lateral laryngeal constrictions were frequently found: there were no significant changes in frequency and amplitude of F(1) in the metallic voiced there were significant increases in amplitudes of F(2), F(3), and F(4) and in frequency for F, metallic Voice perceived as louder was correlated to an increase ill amplitude of F(3) and F(4). Physiological adjustments of velopharynx, pharynx, and larynx are combined in characterizing the metallic voice and can be acoustically related to changes in formant pattern.
Resumo:
Immunoglobulin A deficiency (IgAD) is considered the most common form of primary immunodeficiency. The majority of IgA-deficient individuals are considered asymptomatic, even though IgAD has been associated with an increased frequency of recurrent infections, allergy, and autoimmune diseases. In this study we evaluate the Natural autoantibodies (NatAbs) reactivity to phosphorylcholine (PC) and to some pro-inflammatory molecules in IgAD with or without autoimmune disorders. We observed that in the absence of IgA there is an enhancement of IgG subclasses functioning as NatAbs against PC. Immunoglobulin G (IgG) against lipopolysaccharide, C-reactive protein, and IgA was found in IgAD, regardless of the autoimmune manifestations. Nonetheless, IgAD patients with autoimmune disease showed significantly higher IgG reactivity against pro-inflammatory molecules, such as cardiolipin, oxidized low-density lipoproteins, and phosphatidylserine, with positive correlation between them. In conclusion, the IgG NatAbs against PC may represent a compensatory defense mechanism against infections and control excess of inflammation, explaining the asymptomatic status in the IgA deficiency.
Resumo:
Background: In view of conflicting neuroimaging results regarding autonomic-specific activity within the anterior cingulate cortex (ACC), we investigated autonomic responses to direct brain stimulation during sterecitactic limbic surgery. Methods: Skin conductance activity and accelerative heart rate responses to multi-voltage stimulation of the ACC (n = 7) and paralimbic subcauclate (n = 5) regions were recorded during bilateral anterior cingulotomy and bilateral subcauclate tractotomy (in patients that had previously received an adequate lesion in the ACC), respectively. Results: Stimulations in both groups were accompanied by increased autonomic arousal. Skin conductance activity was significantly increased during ACC stimulations compared with paralimbic targets at 2 V (2.34 +/- .68 [score in microSiemens +/- SE] vs. .34 +/- .09, p = .013) and 3 V (3.52 +/- .86 vs. 1.12 +/- .37, p = .036), exhibiting a strong ""voltage-response"" relationship between stimulus magnitude and response amplitude (difference from 1 to 3 V = 1.15 +/- .90 vs. 3.52 +/- .86, p = .041). Heart rate response was less indicative of between-group differences. Conclusions: This is the first study of its kind aiming at seeking novel insights into the mechanisms responsible for central autonomic modulation. It supports a concept that interregional interactions account for the coordination of autonomic arousal.