890 resultados para phylogeography, consensus approach, ensemble modeling, Pleistocene, ENM, ecological niche modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Few examples of habitat-modelling studies of rare and endangered species exist in the literature, although from a conservation perspective predicting their distribution would prove particularly useful. Paucity of data and lack of valid absences are the probable reasons for this shortcoming. Analytic solutions to accommodate the lack of absence include the ecological niche factor analysis (ENFA) and the use of generalized linear models (GLM) with simulated pseudo-absences. 2. In this study we tested a new approach to generating pseudo-absences, based on a preliminary ENFA habitat suitability (HS) map, for the endangered species Eryngium alpinum. This method of generating pseudo-absences was compared with two others: (i) use of a GLM with pseudo-absences generated totally at random, and (ii) use of an ENFA only. 3. The influence of two different spatial resolutions (i.e. grain) was also assessed for tackling the dilemma of quality (grain) vs. quantity (number of occurrences). Each combination of the three above-mentioned methods with the two grains generated a distinct HS map. 4. Four evaluation measures were used for comparing these HS maps: total deviance explained, best kappa, Gini coefficient and minimal predicted area (MPA). The last is a new evaluation criterion proposed in this study. 5. Results showed that (i) GLM models using ENFA-weighted pseudo-absence provide better results, except for the MPA value, and that (ii) quality (spatial resolution and locational accuracy) of the data appears to be more important than quantity (number of occurrences). Furthermore, the proposed MPA value is suggested as a useful measure of model evaluation when used to complement classical statistical measures. 6. Synthesis and applications. We suggest that the use of ENFA-weighted pseudo-absence is a possible way to enhance the quality of GLM-based potential distribution maps and that data quality (i.e. spatial resolution) prevails over quantity (i.e. number of data). Increased accuracy of potential distribution maps could help to define better suitable areas for species protection and reintroduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new indicator taxa approach to the prediction of climate change effects on biodiversity at the national level in Switzerland. As indicators, we select a set of the most widely distributed species that account for 95% of geographical variation in sampled species richness of birds, butterflies, and vascular plants. Species data come from a national program designed to monitor spatial and temporal trends in species richness. We examine some opportunities and limitations in using these data. We develop ecological niche models for the species as functions of both climate and land cover variables. We project these models to the future using climate predictions that correspond to two IPCC 3rd assessment scenarios for the development of 'greenhouse' gas emissions. We find that models that are calibrated with Swiss national monitoring data perform well in 10-fold cross-validation, but can fail to capture the hot-dry end of environmental gradients that constrain some species distributions. Models for indicator species in all three higher taxa predict that climate change will result in turnover in species composition even where there is little net change in predicted species richness. Indicator species from high elevations lose most areas of suitable climate even under the relatively mild B2 scenario. We project some areas to increase in the number of species for which climate conditions are suitable early in the current century, but these areas become less suitable for a majority of species by the end of the century. Selection of indicator species based on rank prevalence results in a set of models that predict observed species richness better than a similar set of species selected based on high rank of model AUC values. An indicator species approach based on selected species that are relatively common may facilitate the use of national monitoring data for predicting climate change effects on the distribution of biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the factors that shape adaptive genetic variation across species niches has become of paramount importance in evolutionary ecology, especially to understand how adaptation to changing climate affects the geographic range of species. The distribution of adaptive alleles in the ecological niche is determined by the emergence of novel mutations, their fitness consequences and gene flow that connects populations across species niches. Striking demographical differences and source sink dynamics of populations between the centre and the margin of the niche can play a major role in the emergence and spread of adaptive alleles. Although some theoretical predictions have long been proposed, the origin and distribution of adaptive alleles within species niches remain untested. In this paper, we propose and discuss a novel empirical approach that combines landscape genetics with species niche modelling, to test whether alleles that confer local adaptation are more likely to occur in either marginal or central populations of species niches. We illustrate this new approach by using a published data set of 21 alpine plant species genotyped with a total of 2483 amplified fragment length polymorphisms (AFLP), distributed over more than 1733 sampling sites across the Alps. Based on the assumption that alleles that were statistically associated with environmental variables were adaptive, we found that adaptive alleles in the margin of a species niche were also present in the niche centre, which suggests that adaptation originates in the niche centre. These findings corroborate models of species range evolution, in which the centre of the niche contributes to the emergence of novel adaptive alleles, which diffuse towards niche margins and facilitate niche and range expansion through subsequent local adaptation. Although these results need to be confirmed via fitness measurements in natural populations and functionally characterised genetic sequences, this study provides a first step towards understanding how adaptive genetic variation emerges and shapes species niches and geographic ranges along environmental gradients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling ecological niches of species is a promising approach for predicting the geographic potential of invasive species in new environments. Argentine ants (Linepithema humile) rank among the most successful invasive species: native to South America, they have invaded broad areas worldwide. Despite their widespread success, little is known about what makes an area susceptible - or not - to invasion. Here, we use a genetic algorithm approach to ecological niche modeling based on high-resolution remote-sensing data to examine the roles of niche similarity and difference in predicting invasions by this species. Our comparisons support a picture of general conservatism of the species' ecological characteristics, in spite of distinct geographic and community contexts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional econometric approaches in modeling the dynamics of equity and commodity markets, have, made great progress in the past decades. However, they assume rationality among the economic agents and and do not capture the dynamics that produce extreme events (black swans), due to deviation from the rationality assumption. The purpose of this study is to simulate the dynamics of silver markets by using the novel computational market dynamics approach. To this end, the daily data from the period of 1st March 2000 to 1st March 2013 of closing prices of spot silver prices has been simulated with the Jabłonska-Capasso-Morale(JCM) model. The Maximum Likelihood approach has been employed to calibrate the acquired data with JCM. Statistical analysis of the simulated series with respect to the actual one has been conducted to evaluate model performance. The model captures the animal spirits dynamics present in the data under evaluation well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive systems of governance are increasingly gaining attention in respect to complex and uncertain social-ecological systems. Adaptive co-management is one strategy to make adaptive governance operational and holds promise with respect to community climate change adaptation as it facilitates participation and learning across scales and fosters adaptive capacity and resilience. Developing tools which hasten the realization of such approaches are growing in importance. This paper describes explores the Social Ecological Inventory (SEI) as a tool to 'prime' a regional climate change adaptation network. The SEI tool draws upon the social-ecological systems approach in which social and ecological systems are considered linked. SEIs bridge the gap between conventional stakeholder analysis and biological inventories and take place through a six phase process. A case study describes the results of applying an SEI to prime an adaptive governance network for climate change adaptation in the Niagara Region of Canada. Lessons learned from the case study are discussed and highlight how the SEI catalyzed the adaptive co-management process in the case. Future avenues for SEIs in relation to climate change adaptation emerge from this exploratory work and offer opportunities to inform research and adaptation planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geotechnical systems, such as landfills, mine tailings storage facilities (TSFs), slopes, and levees, are required to perform safely throughout their service life, which can span from decades for levees to “in perpetuity” for TSFs. The conventional design practice by geotechnical engineers for these systems utilizes the as-built material properties to predict its performance throughout the required service life. The implicit assumption in this design methodology is that the soil properties are stable through time. This is counter to long-term field observations of these systems, particularly where ecological processes such as plant, animal, biological, and geochemical activity are present. Plant roots can densify soil and/or increase hydraulic conductivity, burrowing animals can increase seepage, biological activity can strengthen soil, geochemical processes can increase stiffness, etc. The engineering soil properties naturally change as a stable ecological system is gradually established following initial construction, and these changes alter system performance. This paper presents an integrated perspective and new approach to this issue, considering ecological, geotechnical, and mining demands and constraints. A series of data sets and case histories are utilized to examine these issues and to propose a more integrated design approach, and consideration is given to future opportunities to manage engineered landscapes as ecological systems. We conclude that soil scientists and restoration ecologists must be engaged in initial project design and geotechnical engineers must be active in long-term management during the facility’s service life. For near-surface geotechnical structures in particular, this requires an interdisciplinary perspective and the embracing of soil as a living ecological system rather than an inert construction material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes a methodology of dosage of glycerol kinase (GK) from baker's yeast. The standardization of the activity of the glycerol kinase from baker's yeast was accomplished using the diluted enzymatic preparation containing glycerol phosphate oxidase (GPO) and glycerol kinase. The mixture was incubated at 60 degrees C by 15 min and the reaction was stopped by the SDS solution addition. A first set of experiments was carried out in order to investigate the individual effect of temperature (7), pH and substrate concentration (S), on GK activity and stability. The pH and temperature stability tests showed that the enzyme presented a high stability to pH 6.0-8.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The K(m) of the enzyme for glycerol was calculated to be 2 mM and V(max) to be 1.15 U/mL. In addition, modeling and optimization of reaction conditions was attempted by response surface methodology (RSM). Higher activity values will be attained at temperatures between 52 and 56 degrees C, pH around 10.2-10.5 and substrate concentrations from 150 to 170 mM.This low cost method for glycerol kinase dosage in a sequence of reactions is of great importance for many industries, like food, sugar and alcohol. RSM showed to be an adequate approach for modeling the reaction and optimization of reaction conditions to maximize glycerol kinase activity. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medium term hydropower scheduling (MTHS) problem involves an attempt to determine, for each time stage of the planning period, the amount of generation at each hydro plant which will maximize the expected future benefits throughout the planning period, while respecting plant operational constraints. Besides, it is important to emphasize that this decision-making has been done based mainly on inflow earliness knowledge. To perform the forecast of a determinate basin, it is possible to use some intelligent computational approaches. In this paper one considers the Dynamic Programming (DP) with the inflows given by their average values, thus turning the problem into a deterministic one which the solution can be obtained by deterministic DP (DDP). The performance of the DDP technique in the MTHS problem was assessed by simulation using the ensemble prediction models. Features and sensitivities of these models are discussed. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) can be a severe and potentially life-threatening disease that often represents a therapeutic challenge because of its heterogeneous organ manifestations. Only glucocorticoids, chloroquine and hydroxychloroquine, azathioprine, cyclophosphamide and very recently belimumab have been approved for SLE therapy in Germany, Austria and Switzerland. Dependence on glucocorticoids and resistance to the approved therapeutic agents, as well as substantial toxicity, are frequent. Therefore, treatment considerations will include 'off-label' use of medication approved for other indications. In this consensus approach, an effort has been undertaken to delineate the limits of the current evidence on therapeutic options for SLE organ disease, and to agree on common practice. This has been based on the best available evidence obtained by a rigorous literature review and the authors' own experience with available drugs derived under very similar health care conditions. Preparation of this consensus document included an initial meeting to agree upon the core agenda, a systematic literature review with subsequent formulation of a consensus and determination of the evidence level followed by collecting the level of agreement from the panel members. In addition to overarching principles, the panel have focused on the treatment of major SLE organ manifestations (lupus nephritis, arthritis, lung disease, neuropsychiatric and haematological manifestations, antiphospholipid syndrome and serositis). This consensus report is intended to support clinicians involved in the care of patients with difficult courses of SLE not responding to standard therapies by providing up-to-date information on the best available evidence.