998 resultados para photosynthetic activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Starch is the main form in which plants store carbohydrates reserves, both in terms of amounts and distribution among different plant species. Carbohydrates are direct products of photosynthetic activity, and it is well know that yield efficiency and production are directly correlated to the amount of carbohydrates synthesized and how these are distributed among vegetative and reproductive organs. Nowadays, in pear trees, due to the modernization of orchards, through the introduction of new rootstocks and the development of new training systems, the understanding and the development of new approaches regarding the distribution and storage of carbohydrates, are required. The objective of this research work was to study the behavior of carbohydrate reserves, mainly starch, in different pear tree organs and tissues: i.e., fruits, leaves, woody organs, roots and flower buds, at different physiological stages during the season. Starch in fruit is accumulated at early stages, and reached a maximum concentration during the middle phase of fruit development; after that, its degradation begins with a rise in soluble carbohydrates. Moreover, relationships between fruit starch degradation and different fruit traits, soluble sugars and organic acids were established. In woody organs and roots, an interconversion between starch and soluble carbohydrates was observed during the dormancy period that confirms its main function in supporting the growth and development of new tissues during the following spring. Factors as training systems, rootstocks, types of bearing wood, and their position on the canopy, influenced the concentrations of starch and soluble carbohydrates at different sampling dates. Also, environmental conditions and cultural practices must be considered to better explain these results. Thus, a deeper understanding of the dynamics of carbohydrates reserves within the plant could provide relevant information to improve several management practices to increase crop yield efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Global change is characterized by increased {CO2} concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant level may be reversible, partially reversible or irreversible. The photosynthetically active biomass depends on the number and the size of mature leaves and the photosynthetic activity in this biomass during stress and subsequent recovery phases. The total area of active leaves is determined by leaf expansion and senescence, while net photosynthesis per leaf area is primarily influenced by stomatal opening (stomatal conductance), mesophyll conductance, activity of the photosynthetic apparatus (light absorption and electron transport, activity of the Calvin cycle) and {CO2} release by decarboxylation reactions (photorespiration, dark respiration). Water status, stomatal opening and leaf temperature represent a "magic triangle" of three strongly interacting parameters. The response of stomata to altered environmental conditions is important for stomatal limitations. Rubisco protein is quite thermotolerant, but the enzyme becomes at elevated temperature more rapidly inactivated (decarbamylation, reversible effect) and must be reactivated by Rubisco activase (carbamylation of a lysine residue). Rubisco activase is present under two forms (encoded by separate genes or products of alternative splicing of the pre-mRNA from one gene) and is very thermosensitive. Rubisco activase was identified as a key protein for photosynthesis at elevated temperature (non-stomatal limitation). During a moderate heat stress Rubisco activase is reversibly inactivated, but during a more severe stress (higher temperature and/or longer exposure) the protein is irreversibly inactivated, insolubilized and finally degraded. On the level of the leaf, this loss of photosynthetic activity may still be reversible when new Rubisco activase is produced by protein synthesis. Rubisco activase as well as enzymes involved in the detoxification of reactive oxygen species or in osmoregulation are considered as important targets for breeding crop plants which are still productive under drought and/or at elevated leaf temperature in a changing climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photosynthetic parameters of phytoplankton and sea ice algae from landfast sea ice of the Chukchi Sea off Point Barrow, Alaska, were assessed in spring 2005 and winter through spring 2006 using Pulse Amplitude Modulated (PAM) fluorometry including estimates of maximum quantum efficiency (Fv/Fm), maximum relative electron transport rate (rETRmax), photosynthetic efficiency (alpha), and the photoadaptive index (Ek). The use of centrifuged brine samples allowed to document vertical gradients in ice algal acclimation with 5 cm vertical resolution for the first time. Bottom ice algae (0-5 cm from ice-water interface) expressed low Fv/Fm (0.331-0.426) and low alpha (0.098-0.130 /(µmol photons/m**2/s)) in December. Fv/Fm and alpha increased in March and May (0.468-0.588 and 0.141-0.438 /(µmol photons/m**2/s), respectively) indicating increased photosynthetic activity. In addition, increases in rETRmax (3.3-16.4 a.u.) and Ek (20-88 µmol photons/m**2/s) from December to May illustrates a higher potential for primary productivity as communities become better acclimated to under-ice light conditions. In conclusion, photosynthetic performance by ice algae (as assessed by PAM fluorometry) was tightly linked to sea ice salinity, temperature, and inorganic nutrient concentrations (mainly nitrogen).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Species composition, phytoplankton abundance, and relative yield of variable fluorescence (F_v/F_m) were determined in the mesotrophic Nhatrang Bay in October-November 2004. Species diversity (250 taxonomic units) and heterogeneity of the phytoplankton structure were high. With respect to number of species and their abundance, diatoms prevailed. In selected parts of the bay, dinoflagellates dominated. Average biomass in the water column under 1 m**2 (Bt) varied from 2.3 to 64.4 mg C/m**3 (av. 31.0 mg C/m**3). Bt values were the lowest at stations nearest to the river mouth. Seaward, Bt increased. Bt values increased with depth at some stations and decreased at others. In surface layers biomass was lower than that in the underlying waters. F_v/F_m values ranged from 0.10 to 0.64 (av. 0.49). The lowest F_v/F_m values were observed in the area close to the seaport. Over greater part of the bay, F_v/F_m values were higher than 0.47. Such values are indicative of relatively high potential of photosynthetic activity of phytoplankton. Abundance and species diversity were higher than those in the dry season (March-April).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organisms populating benthic shallow water systems of both polar regions are adapted to a particularly harsh environment. We studied effects of freezing and the combination of high light intensities and low water temperatures on photosynthesis of key macroalgal species from the Arctic intertidal (Fucus distichus) and Antarctic subtidal (Palmaria decipiens). Photosynthetic activity of F. distichus specimens was monitored during the freezing process; there was a marked decrease in quantum yield with decreasing temperatures, and a rapid recovery as soon as temperatures increased again. Thus, under the experimental conditions tested, no indication of photodamage was found. Specimens of Palmaria were exposed to a combination of high light intensities and low water temperatures. A persistent impairment of photosynthetic activity occurred at 0°C at light intensities of 400 µmol photons m-2 s-1. In all treatments, there was a decreasing ratio of phycobiliproteins to chlorophyll a. Overall, the two studies provide baseline data for interpreting physiological responses of two important macroalgal species in an extreme environment, the polar coastal ecosystem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Macroalgae, in particular kelps, produce a large amount of biomass in Kongsfjorden, which is to a great extent released into the water in an annual cycle. As an example, the brown alga Alaria esculenta loses its blade gradually, 3 ± 0.8 % of the blade area per day (August 2012), thereby adding to the pool of particulate organic matter (POM) in the fjord. Upon release small thallus pieces are "aging" in that they are prone to leaching and serving as substrate for microorganisms, thus turning into palatable food for suspension and bottom feeders. In order to define a macroalgal baseline for the Kongsfjorden food web, stable isotopes d14C and d15N were measured in individuals of A. esculenta, Saccharina latissima and Laminaria digitata directly sampled after collection and in artificially produced POM (aPOM) of A. esculenta that was allowed to age under experimental conditions. In aPOM from this species sampled in August 2012 the C/N ratios decreased between d1 and d8 of a 14-day culture period in parallel to the fading photosynthetic activity of the algal fragments as demonstrated by use of an Imaging-PAM. Microscopic observations of the aPOM in August 2012 and 2013 revealed the frequent occurrence of small brown algal endo- and epiphytes. First feeding experiments with Mysis oculata (Mysids) and Hiatella arctica (Bivalves) showed that these species can ingest macroalgal POM. The importance of kelp-derived POM for the food web is subject of the current research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The eastern Mediterranean is a hotspot of biological invasions. Numerous species of Indo-pacific origin have colonized the Mediterranean in recent times, including tropical symbiont-bearing foraminifera. Among these is the species Pararotalia calcariformata. Unlike other invasive foraminifera, this species has been discovered only two decades ago and is restricted to the eastern Mediterranean coast. Combining ecological, genetic and physiological observations, we attempt to explain the recent invasion of this species in the Mediterranean Sea. Using morphological and genetic data, we confirm the species attribution to P. calcariformata McCulloch 1977 and identify its symbionts as a consortium of diatom species dominated by Minutocellus polymorphus. We document photosynthetic activity of its endosymbionts using Pulse Amplitude Modulated Fluorometry and test the effects of elevated temperatures on growth rates of asexual offspring. The culturing of asexual offspring for 120 days shows a 30-day period of rapid growth followed by a period of slower growth. A subsequent 48-day temperature sensitivity experiment indicates a similar developmental pathway and high growth rate at 28°C, whereas an almost complete inhibition of growth was observed at 20°C and 35°C. This indicates that the offspring of this species may have lower tolerance to cold temperatures than what would be expected for species native to the Mediterranean. We expand this hypothesis by applying a Species Distribution Model (SDM) based on modern occurrences in the Mediterranean using three environmental variables: irradiance, turbidity and yearly minimum temperature. The model reproduces the observed restricted distribution and indicates that the range of the species will drastically expand westwards under future global change scenarios. We conclude that P. calcariformata established a population in the Levant because of the recent warming in the region. In line with observations from other groups of organisms, our results indicate that continued warming of the eastern Mediterranean will facilitate the invasion of more tropical marine taxa into the Mediterranean, disturbing local biodiversity and ecosystem structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metabolic processes have the potential to modulate the effects of ocean acidification (OA) in nearshore macroalgal beds. We investigated whether natural mixed assemblages of the articulate coralline macroalgae Arthrocardia corymbosa and understory crustose coralline algae (CCA) altered pH and O2 concentrations within and immediately above their canopies. In a unidirectional flume, we tested the effect of water velocity (0-0.1 m/s), bulk seawater pH (ambient pH 8.05, and pH 7.65), and irradiance (photosynthetically saturating light and darkness) on pH and O2 concentration gradients, and the derived concentration boundary layer (CBL) thickness. At bulk seawater pH 7.65 and slow velocities (0 and 0.015 m/s), pH at the CCA surface increased to 7.90-8.00 in the light. Although these manipulations were short term, this indicates a potential daytime buffering capacity that could alleviate the effects of OA. Photosynthetic activity also increased O2 concentrations at the surface of the CCA. However, this moderating capacity was flow dependent; the CBL thickness decreased from an average of 26.8 mm from the CCA surface at 0.015 m/s to 4.1 mm at 0.04 m/s. The reverse trends occurred in the dark, with respiration causing pH and O2 concentrations to decrease at the CCA surface. At all flow velocities the CBL thicknesses (up to 68 mm) were much greater than those previously published, indicating that the presence of canopies can alter the CBL substantially. In situ, the height of macroalgal canopies can be an order of magnitude larger than those used here, indicating that the degree of buffering to OA will be context dependent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A future business-as-usual scenario (A1FI) was tested on two bloom-forming cyanobacteria of the Baltic Proper, Nodularia spumigena and Aphanizomenon sp., growing separately and together. The projected scenario was tested in two laboratory experiments where (a) interactive effects of increased temperature and decreased salinity and (b) interactive effects of increased temperature and elevated levels of pCO2 were tested. Increased temperature, from 12 to 16 °C, had a positive effect on the biovolume and photosynthetic activity (F v/F m) of both species. Compared when growing separately, the biovolume of each species was lower when grown together. Decreased salinity, from 7 to 4, and elevated levels of pCO2, from 380 to 960 ppm, had no effect on the biovolume, but on F v/F m of N. spumigena with higher F v/F m in salinity 7. Our results suggest that the projected A1FI scenario might be beneficial for the two species dominating the extensive summer blooms in the Baltic Proper. However, our results further stress the importance of studying interactions between species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Species composition and abundance of phytoplankton and chlorophyll concentration were measured at three horizons of 9 stations in the Nha Trang Bay of the South China Sea in March 1998. Vertical distribution of fluorescence parameters, temperature and irradiance were measured in the 0-18 m layer of the water column at 21 stations. It was shown that according to biomass (B) and chlorophyll concentration (Chl) the Bay is mezotrophic. B and Chl in the water column increased seaward. Mean values of Chl in the southern part of the Bay exceeded those in northern part. Mean values of B were similar. B and Chl in the bottom layer exceeded ones in the upper layer. Diatoms dominated in species diversity and abundance. Diatom Guinardia striata made the main contribution to phytoplankton biomass. Similarity of phytoplankton was high. In the upper layer phytoplankton was photoinhibited during the most part of the light period, but at the bottom photosynthetic activity was high. Water column B varied in an order of magnitude during the daily cycle mainly because of B variations in the bottom layer due to tide flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Charophytes are found in fresh and brackish waters across the globe and play key roles in coastal ecosystems. However, their response to increasing CO2 is not well understood. The aim of the study was to detect the effects of elevated CO2 on the physiology of charophyte species growing in the brackish Baltic Sea by measuring net primary production. Mesocosm experiments were conducted in the Kõiguste Bay (N Gulf of Riga) during the field season of 2012. Separate mesocosms were maintained at different pCO2 levels: 2000, 1000 and 200 µatm. The experiments were carried out with three species of charophytes: Chara aspera, C. tomentosa and C. horrida. The short-term photosynthetic responses of charophytes to different treatments were measured by the oxygen method. The results show that elevated CO2 levels in brackish water may enhance the photosynthetic activity of charophyte species and suggest that increasing CO2 in the Baltic Sea could have implications for interspecific competition and community structure in a future high CO2 world.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A crop management and precision agriculture software application facilitates the flow of information between disparate software/equipment and the network of individuals that work with them. A new generation of farmers are using precision technology to help them more efficiently manage their roplands. By measuring precisely the way their fields reflect and emit energy at visible and infrared wavelengths, precision farmers can monitor a wide range of variables that affect their crops,such as soil moisture, surface temperature, photosynthetic activity, and weed or pest infestations. Over thirty years have passed since Nelson and Winter put the concept of routines firmly at the center of the analysis of organizational and economic change. Taken as the central unit of analysis, routines would help understand energy and agriculture economy evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two outstanding features of the flowering plant family Winteraceae are the occlusion of their stomatal pores by cutin plugs and the absence of water-conducting xylem vessels. An adaptive relationship between these two unusual features has been suggested whereby stomatal plugs restrict gas exchange to compensate for the presumed poor conductivity of their vesselless wood. This hypothesized connection fueled evolutionary arguments that the vesselless condition is ancestral in angiosperms. Here we show that in Drimys winteri, a tree common to wet forests, these stomatal occlusions pose only a small fixed resistance to water loss. In addition, they modify the humidity response of guard cells such that under high evaporative demand, leaves with plugs lose water at a faster rate than leaves from which the plugs have been experimentally removed. Instead of being adaptations for drought, we present evidence that these cuticular structures function to maintain photosynthetic activity under conditions of excess water on the leaf surface. Stomatal plugs decrease leaf wettability by preventing the formation of a continuous water film that would impede diffusion of CO2 into the leaf. Misting of leaves had no effect on photosynthetic rate of leaves with plugs, but resulted in a marked decrease (≈40%) in leaves from which the plugs had been removed. These findings do not support a functional association between stomatal plugs and hydraulic competence and provide a new perspective on debates surrounding the evolution of vessels in angiosperms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of ultraviolet-B (UV-B) radiation on water relations, leaf development, and gas-exchange characteristics in pea (Pisum sativum L. cv Meteor) plants subjected to drought were investigated. Plants grown throughout their development under a high irradiance of UV-B radiation (0.63 W m−2) were compared with those grown without UV-B radiation, and after 12 d one-half of the plants were subjected to 24 d of drought that resulted in mild water stress. UV-B radiation resulted in a decrease of adaxial stomatal conductance by approximately 65%, increasing stomatal limitation of CO2 uptake by 10 to 15%. However, there was no loss of mesophyll light-saturated photosynthetic activity. Growth in UV-B radiation resulted in large reductions of leaf area and plant biomass, which were associated with a decline in leaf cell numbers and cell division. UV-B radiation also inhibited epidermal cell expansion of the exposed surface of leaves. There was an interaction between UV-B radiation and drought treatments: UV-B radiation both delayed and reduced the severity of drought stress through reductions in plant water-loss rates, stomatal conductance, and leaf area.