969 resultados para photo-induced birefringence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out experiments of induced birefringence via two-photon absorption in spin-coated films of the conjugated polymer poly[2-[ethyl-[4-(4-nitro-phenylazo)-phenyl] -amino]-ethane (3-thienyl)ethanoate], PAzT, at 680 and 775 nm. This process allows recording in the bulk because of the spatial confinement of the bireffingence provided by the two-photon absorption. The induced birefringence is associated with molecular reorientation caused by the two-photon induced isomerization of the azochromophores attached to the polymer backbone. In addition, the two-photon absorption spectrum of PAzT was measured to help selecting the excitation wavelength for two-photon absorption induced birefringence. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of GeAsS glass are prepared by e-beam evaporation technique. Photoinduced birefringence (PIB) is studied as function of the As content with concentrations ranging from 10% to 40%. Raman spectroscopy is used as additional tool to explain the corresponding changes undergone by the material system. The breakdown of homopolar bonds is suggested as a possible mechanism of photo induced structural changes leading to the creation of the PIB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The combination of thermally- and photochemically-induced polymerization using light sensitive alkoxyamines was investigated. The thermally driven polymerizations were performed via the cleavage of the alkoxyamine functionality, whereas the photochemically-induced polymerizations were carried out either by nitroxide mediated photo-polymerization (NMP2) or by a classical type II mechanism, depending on the structure of the light-sensitive alkoxyamine employed. Once the potential of the various structures as initiators of thermally- and photo-induced polymerizations was established, their use in combination for block copolymer syntheses was investigated. With each alkoxyamine investigated, block copolymers were successfully obtained and the system was applied to the post-modification of polymer coatings for application in patterning and photografting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes [VO(L)(B)]Cl-2 (1-3), where L is bis(2-benzimidazolylmethyl)amine and B is 1,10-phenanthroline(phen),dipyrido[3,2-d:2',3'-f]quinoxaline(dpq) or dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been prepared, characterized, and their photo-induced DNA and protein cleavage activity studied. The photocytotoxicity of complex 3 has been studied using adenocarcinoma A549 cells, The phen complex 1, structurally characterized by single-crystal X-ray crystallography, shows the presence of a vanadyl group in six-coordinate VON5 coordination geometry. The ligands L and phen display tridentate and bidentate N-donor chelating binding modes, respectively. The complexes exhibit a d-d band near 740 nm in 15% DMF-Tris-HCl buffer (pH 7.2). The phen and dpq complexes display an irreversible cathodic cyclic voltammetric response near -0.8 V in 20% DMF-Tris-HCl buffer having 0.1 M KCl as supporting electrolyte. The dppz complex 3 exhibits a quasi-reversible voltammogram near -0.6 V (vs SCE) that is assignable to the V(IV)-V(III)couple. The complexes bind to calf thymus DNA giving binding constant values in the range of 6.6 x 10(4)-2.9 x 10(5) M-1. The binding site size, thermal melting and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor ``chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A light of 365 nm via a mechanistic pathway that involves formation of both singlet oxygen and hydroxyl radicals. The complexes show significant photocleavage of DNA in near-IR light (>750 nm) via hydroxyl radical pathway. Among the three complexes, the dppz complex 3 shows significant BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via hydroxyl radical pathway. The dppz complex 3 also exhibits photocytotoxicity in non-small cell lung carcinoma/human lung adenocarcinoma A549 cells giving IC50 value of 17 mu M in visible light(IC50 = 175 mu M in dark).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent developments in our laboratory related to polymer-based light sensors are reviewed. The inherent processibility of the active polymer medium is utilized in the implementation of different designs for the opto-electronic applications. The utility of these devices as sensitive photodetectors, image sensors and position sensitive detectors is demonstrated. The schottky-type layer formation at interfaces of polymers such as polyalkylthiophenes and aluminum accompanied by the enhanced photo-induced charge separation due to high local electric field is tapped for some of these device structures. The sensitivity of polymer-based field effect transistors to light also provides a convenient lateral geometry for efficient optical-coupling and control of the transistor state. ne range of these polymer-detectors available with the option of operating in the diode and transistor modes should be an attractive feature for many potential applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thin films of Sb20S40Se40 of thickness 800 nm were prepared by thermal evaporation method. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS and Raman spectra supports the optical changes happening in the film due to light exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chalcogenide glasses are interesting materials for their infrared transmitting properties and photo-induced effects. This paper reports the influence of light on the optical properties of Sb10S40Se50 thin films. The amorphous nature and chemical composition of the deposited film was studied by X-ray diffraction and energy dispersive X-ray analysis (EDAX). The optical constants, i.e., refractive index, extinction coefficient, and optical band gap as well as film thickness are determined from the measured transmission spectra using the Swanepoel method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The dispersion energy parameter was found to be less for the laser-irradiated film, which indicates the laser-irradiated film is more microstructurally disordered as compared to the as-prepared film. It is observed that laser-irradiation of the films leads to decrease in optical band gap (photo-darkening) while increase in refractive index. The decrease in the optical band gap is explained on the basis of change in nature of films due to chemical disorderness and the increase in refractive index may be due to the densification of films with improved grain structure because of microstructural disorderness in the films. The optical changes are supported by X-ray photoelectron spectroscopy data. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes of 2-(2'-pyridyl)-1,10-phenanthroline (pyphen), viz. VO(pyphen)(acac)](ClO4) (1), VO(pyphen)(anacac)](ClO4) (2) and VO(pyphen)(cur)](ClO4) (3), where acac is acetylacetonate (in 1), anacac is anthracenylacetylacetonate (in 2) and cur is curcumin monoanion (in 3) were synthesized, characterized and their photo-induced DNA cleavage activities and photo-cytotoxicities studied. The complexes are 1: 1 electrolytes in DMF. The one-electron paramagnetic complexes show a d-d band near 760 nm in DMF. Complexes 2 and 3 are blue and green emissive, respectively, in DMSO. The complexes exhibit irreversible V-IV/V-III reductive responses near -1.1 V and V-V/V-IV oxidative responses near 0.85 V vs. SCE in DMF-0.1 M TBAP. Complexes 2 and 3 display significant and selective photo-cytotoxicity upon irradiation with visible light giving an IC50 value of about 5 mu M against HeLa and MCF-7 cancer cells; they are significantly less-toxic against normal 3T3 control cells and in the absence of light. Complex 1 was used as a control. Both cytosolic and nuclear localization of the complexes were observed on the basis of fluorescence imaging. The complexes, avid binders to calf thymus (ct) DNA, were found to photocleave supercoiled pUC19 DNA upon irradiation with near-IR light (785 nm) by generating hydroxyl radical (OH) as the reactive oxygen species (ROS). Cell death events noted with HeLa and MCF-7 cell lines likely are attributable to apoptotic pathways involving light-assisted generation of intracellular ROS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photoluminescence (PL) and photo induced current transient spectroscopy (PICTS) have been used to study deep levels in semi-insulating (SI) InP prepared by annealing undoped InP in pure phosphorus (PP) and iron phosphide (IP) ambient. Defects are much fewer in IP SI-InP than in PP SI-InP. Deep-level-related PL emission could only be detected in IP SI-InP. The results indicate that Fe diffusion inhibits the thermal formation of a number of defects in annealed InP. A complex defect has been formed in the annealing process in the presence of Fe.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel bifunctional ruthenium(n) complexes, [Ru(TAP)2(POQ-Nmet)]2+ and [Ru(BPY)2(POQ-Nmet)]2+(la, 2a), containing a metallic and an organic moiety, have been prepared as photoprobes and photoreagents of DNA(TAP = 1,4,5,8-tetraazaphenanthrene, POQ-Nmet = 5-[6-(7-chloroquinolin-4-yl)-3-thia-6-azaheptanamido]-l,10phenanthroline). The ES mass spectrometry and 'H NMR data in organic solvents indicate that the quinoline moiety exists in both the protonated and non-protonated form. Moreover, the comparison of the NMR data with those of the corresponding monofunctional complexes(without quinoline) evidences that [Ru(TAP).2(POQ-Nmet)]2+ and [Ru(BPY)J(POQ-Nmet)]2+ are unfolded when the quinoline unit is protonated whereas deprotonation permits folding of the molecule. In the folded state the spatial proximity of the electron donor(the organic moiety) and electron acceptor(the metallic moiety) in [Ru(TAP)2(POQ-Nmet)]2+ favours intramolecular photo-induced electron transfer, which has been shown in a previous study to be responsible for the very low luminescence of la in non-protonating solutions. The restoration of the luminescence by protonation of the quinoline moiety as observed previously is in agreement with the unfolding of the molecule demonstrated in this work. The existence of such folding-unfolding processes related to protonation is crucial for studies of la with DNA. © The Royal Society of Chemistry 2000.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The molecular architecture of azopolymers may be controlled via chemical synthesis and with selection of a suitable film-forming method, which is important for improving their properties for practical uses. Here we address the main challenge of combining the photoinduced birefringence features of azopolymers with the higher thermal and mechanical stabilities of poly(methyl methacrylate) (PMMA) using Atom Transfer Radical Polymerization (ATRP) to synthesize diblock- and triblock-copolymers of an azomonomer and the monomer methyl methacrylate. Langmuir-Blodgett (LB) films made with the copolymers mixed with cadmium stearate displayed essentially the same optically induced birefringence characteristics, in terms of maximum and residual birefringence and time for writing, as the mixed LB films with the homopolymer poly[4-(N-ethyl-N-(2-methacryloxyethyl))amino-2`-chloro-4`-nitroazobenzene] (HPDR13), also synthesized via ATRP. In fact, the controlled architecture of HPDR13 chains led to Langmuir films that could be more closely packed and reach higher collapse pressures than the corresponding films obtained with HPDR13-conv synthesized via conventional radicalar polymerization. This allowed LB films to be fabricated from neat HPDR13, which was not possible with HPDR13-conv. The enhanced organization in the LB films produced with controlled azopolymer chains, however, led to a smaller free volume available for isomerization of the azochromophores, thus yielding a lower photoinduced birefringence than in the HPDR13-conv films. The combination of ATRP synthesis and LB technology is then promising to obtain optical storage in films with improved thermal and mechanical processabilities, though a further degree of control must be sought to exploit film organization while maintaining the necessary free volume in the films. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nanoscale interactions between adjacent layers of layer-by-layer (LBL) films from poly(allylamine hydrochloride) (PAH) and azodye Brilliant Yellow (BY) have been investigated, with the films employed for optical storage and the formation of surface-relief gratings. Using Fourier transform infrared spectroscopy, we identified interactions involving SO3- groups from BY and NH3+ groups from PAH. These electrostatic interactions were responsible for the slow kinetics of writing in the optical storage experiments, due to a tendency to hinder photoisomerization and the subsequent reorientation of the azochromophores. The photoinduced birefringence did not saturate after one hour of exposure to the writing laser, whereas in azopolymer films, saturation is normally reached within a few minutes. on the other hand, the presence of such interactions prevented thermal relaxation of the chromophores after the writing laser was switched off, leading to a very stable written pattern. Moreover, the nanoscale interactions promoted mass transport for photoinscription of surface-relief gratings on PAH/BY LBL films, with the azochromophores being able to drag the inert PAH chains when undergoing the trans-cis-trans photoisomerization cycles. A low level of chromophore degradation was involved in the SRG photoinscription, which was confirmed with micro-Raman and fluorescence spectroscopies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present results of thermally stimulated depolarization current (TSDC) measurements in synthetic and natural alexandrite, which show TSDC bands related to the presence of electric dipoles in both types of samples. Synthetic material shows a wide TSDC band with a peak at 179 K, which can be fitted by two distinct relaxing dipole distributions. For natural alexandrite the TSDC band has a maximum around 195 K and can be fitted by three different distributions. Both samples present one of the calculated curves with a peak about 179 K, with activation energy of 0.57 eV and constant relaxation time of 1 × 10-14 sec. Photo-induced TSDC shows that TSDC bands can also be generated by simultaneous application of light and an electric field at 77 K.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)