173 resultados para phosphoenolpyruvate carboxykinase gluconeogenesis
Resumo:
The bacterial phosphoenolpyruvate/glycose phosphotransferase system (PTS) comprises a group of proteins that catalyze the transfer of the phosphoryl group from phosphoenolpyruvate (PEP) to sugars concomitant with their translocation. The first two steps of the phosphotransfer sequence are PEP <--> Enzyme I (EI) <--> HPr (the histidine-containing phosphocarrier protein). We have proposed that many functions of the PTS are regulated by EI, which undergoes a monomer/dimer transition. EI monomer (63.5 kDa) comprises two major domains: a flexible C-terminal domain (EI-C) and a protease-resistant, structurally stable N-terminal domain (EI-N) containing the active site His. Trypsin treatment of Salmonella typhimurium EI yielded EI-N, designated EI-N(t). Homogeneous recombinant Escherichia coli EI-N [i.e., EI-N(r)], has now been prepared in quantity, shows the expected thermodynamic unfolding properties and, similarly to EI-N(t), is phosphorylated by phospho-HPr, but not by PEP. In addition, binding of EI-N(r) to HPr was studied by isothermal titration calorimetry: K/a = 1.4 x 10(5) M(-1) and delta H = +8.8 kcal x mol(-1). Both values are comparable to those for HPr binding to intact EI. Fluorescence anisotropy [dansyl-EI-N(r)] and gel filtration of EI-N(r) show that it does not dimerize. These results emphasize the role of EI-C in dimerization and the regulation of intact EI.
Resumo:
Hyperglycemia is a common feature of diabetes mellitus. It results from a decrease in glucose utilization by the liver and peripheral tissues and an increase in hepatic glucose production. Glucose phosphorylation by glucokinase is an initial event in glucose metabolism by the liver. However, glucokinase gene expression is very low in diabetic animals. Transgenic mice expressing the P-enolpyruvate carboxykinase/glucokinase chimeric gene were generated to study whether the return of the expression of glucokinase in the liver of diabetic mice might prevent metabolic alterations. In contrast to nontransgenic mice treated with streptozotocin, mice with the transgene previously treated with streptozotocin showed high levels of both glucokinase mRNA and its enzyme activity in the liver, which were associated with an increase in intracellular levels of glucose 6-phosphate and glycogen. The liver of these mice also showed an increase in pyruvate kinase activity and lactate production. Furthermore, normalization of both the expression of genes involved in gluconeogenesis and ketogenesis in the liver and the production of glucose and ketone body by hepatocytes in primary culture were observed in streptozotocin-treated transgenic mice. Thus, glycolysis was induced while gluconeogenesis and ketogenesis were blocked in the liver of diabetic mice expressing glucokinase. This was associated with normalization of blood glucose, ketone bodies, triglycerides, and free fatty acids even in the absence of insulin. These results suggest that the expression of glucokinase during diabetes might be a new approach to the normalization of hyperglycemia.
Resumo:
In this paper, the chemical reactivity of C3 of phosphoenolpyruvate (PEP) has been analyzed in terms of density functional theory quantified through quantum chemistry calculations. PEP is involved in a number of important enzymatic reactions, in which its C3 atom behaves like a base. In three different enzymatic reactions analyzed here, C3 sometimes behaves like a soft base and sometimes behaves like a hard base in terms of the hard-soft acid-base principle. This dual nature of C3 of PEP was found to be related to the conformational change of the molecule. This leads to a testable hypothesis: that PEP adopts particular conformations in the enzyme-substrate complexes of different PEP-using enzymes, and that the enzymes control the reactivity through controlling the dihedral angle between the carboxylate and the C==C double bond of PEP.
Resumo:
The first protein component of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system (PTS) is the 64-kDa protein enzyme I (EI), which can be phosphorylated by phosphoenolpyruvate (PEP) and carry out phosphotransfer to the acceptor heat-stable protein (HPr). The isolated amino-terminal domain (EIN) of E. coli EI is no longer phosphorylated by PEP but retains the ability to participate in reversible phosphotransfer to HPr. An expression vector was constructed for the production of large amounts of EIN, and conditions were developed for maximal expression of the protein. A three-column procedure is described for purification to homogeneity of EIN; a 500-ml culture yields approximately 80 mg of pure protein in about a 75% yield. Intact E. coli EI is effective in phosphotransfer from PEP to HPr from E. coli but not to the HPrs from Bacillus subtilis or Mycoplasma capricolum. Phosphotransfer from EI to enzyme IIAglc (EIIAglc) from E. coli or M. capricolum requires the intermediacy of HPr. The phosphorylated form of EIN is capable of more general phosphotransfer; it will effect phosphotransfer to HPrs from E. coli, B. subtilis, and M. capricolum as well as to EIAglc from E. coli. These studies demonstrate that the carboxyl-terminal domain of EI confers on the protein the capability to accept a phosphoryl group from PEP as well as a discriminator function that allows the intact protein to promote effective phosphoryl transfer only to E. coli HPr.
Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure
Resumo:
A key factor in the use of assisted reproductive technologies (ART) for diverse species is the safety of procedures for long-term health. By using a mouse model, we have investigated the effect of in vitro culture and embryo transfer (ET) of superovulated embryos on postnatal growth and physiological activity compared with that of embryos developing in vivo. Embryo culture from two-cell to blastocyst stages in T6 medium either with or without a protein source reduced blastocyst trophectoderm and inner cell mass cell number compared with that of embryos developing in vivo. Embryo culture and ET had minimal effects on postnatal growth when compared with in vivo development with an equivalent litter size. However, embryo culture, and to a lesser extent ET, led to an enhanced systolic blood pressure at 21 weeks compared with in vivo development independent of litter size, maternal origin, or body weight. Moreover, activity of enzymatic regulators of cardiovascular and metabolic physiology, namely, serum angiotensin-converting enzyme and the gluconeogenesis controller, hepatic phosphoeno/pyruvate carboxykinase, were significantly elevated in response to embryo culture and/or ET in female offspring at 27 weeks, independent of maternal factors and postnatal growth. These animal data indicate that postnatal physiological criteria important in cardiovascular and metabolic health may be more sensitive to routine ART procedures than growth. © 2007 by The National Academy of Sciences of the USA.
Resumo:
Two distinct phosphoenolpyruvate carboxylase (PEPC) isozymes occur in vascular plants and green algae: plant-type PEPC (PTPC) and bacterial-type PEPC (BTPC). PTPC polypeptides typically form a tightly regulated cytosolic Class-1 PEPC homotetramer. BTPCs, however, appear to be less widely expressed and to exist only as catalytic and regulatory subunits that physically interact with co-expressed PTPC subunits to form hetero-octameric Class-2 PEPC complexes that are highly desensitized to Class-1 PEPC allosteric effectors. Yeast two-hybrid studies indicated that castor plant BTPC (RcPPC4) interacts with all three Arabidopsis thaliana PTPC isozymes, and that it forms stronger interactions with AtPPC2 and AtPPC3, suggesting that specific PTPCs are preferred for Class-2 PEPC formation. In contrast, Arabidopsis BTPC (AtPPC4) appeared to interact very weakly with AtPPC2 and AtPPC3, suggesting that BTPCs from different species may have different physical properties, hypothesized to be due to sequence dissimilarities within their ~10 kDa intrinsically disordered region. Recent RNA-seq and microarray data were analyzed to obtain a better understanding of BTPC expression patterns in different tissues of various monocot and dicot species. High levels of BTPC transcripts, polypeptides and Class-2 PEPC complexes were originally discovered in developing castor seeds, but the analysis revealed a broad range of diverse tissues where abundant BTPC transcripts are also expressed, such as the developing fruits of cucumber, grape, and tomato. Marked BTPC expression correlated well with the presence of ~116 kDa immunoreactive BTPC polypeptides, as well as Class-2 PEPC complexes in the immature fruit of cucumbers and tomatoes. It is therefore hypothesized that in vascular plants BTPC and thus Class-2 PEPC complexes maintain anaplerotic PEP flux in tissues with elevated malate levels that would potently inhibit ‘housekeeping’ Class-1 PEPCs. Elevated levels of malate can be used by biosynthetically active sink tissues such as immature tomatoes and cucumbers for rapid cell expansion, drought or salt stressed roots for osmoregulation, and developing seeds and pollen as a precursor for storage lipid and protein biosynthesis.
Resumo:
Thesis (Master, Biology) -- Queen's University, 2016-09-29 20:09:46.997
Resumo:
Recently it has been shown that the consumption of a diet high in saturated fat is associated with impaired insulin sensitivity and increased incidence of type 2 diabetes. In contrast, diets that are high in monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs), especially very long chain n-3 fatty acids (FAs), are protective against disease. However, the molecular mechanisms by which saturated FAs induce the insulin resistance and hyperglycaemia associated with metabolic syndrome and type 2 diabetes are not clearly defined. It is possible that saturated FAs may act through alternative mechanisms compared to MUFA and PUFA to regulate of hepatic gene expression and metabolism. It is proposed that, like MUFA and PUFA, saturated FAs regulate the transcription of target genes. To test this hypothesis, hepatic gene expression analysis was undertaken in a human hepatoma cell line, Huh-7, after exposure to the saturated FA, palmitate. These experiments showed that palmitate is an effective regulator of gene expression for a wide variety of genes. A total of 162 genes were differentially expressed in response to palmitate. These changes not only affected the expression of genes related to nutrient transport and metabolism, they also extend to other cellular functions including, cytoskeletal architecture, cell growth, protein synthesis and oxidative stress response. In addition, this thesis has shown that palmitate exposure altered the expression patterns of several genes that have previously been identified in the literature as markers of risk of disease development, including CVD, hypertension, obesity and type 2 diabetes. The altered gene expression patterns associated with an increased risk of disease include apolipoprotein-B100 (apo-B100), apo-CIII, plasminogen activator inhibitor 1, insulin-like growth factor-I and insulin-like growth factor binding protein 3. This thesis reports the first observation that palmitate directly signals in cultured human hepatocytes to regulate expression of genes involved in energy metabolism as well as other important genes. Prolonged exposure to long-chain saturated FAs reduces glucose phosphorylation and glycogen synthesis in the liver. Decreased glucose metabolism leads to elevated rates of lipolysis, resulting in increased release of free FAs. Free FAs have a negative effect on insulin action on the liver, which in turn results in increased gluconeogenesis and systemic dyslipidaemia. It has been postulated that disruption of glucose transport and insulin secretion by prolonged excessive FA availability might be a non-genetic factor that has contributed to the staggering rise in prevalence of type 2 diabetes. As glucokinase (GK) is a key regulatory enzyme of hepatic glucose metabolism, changes in its activity may alter flux through the glycolytic and de novo lipogenic pathways and result in hyperglycaemia and ultimately insulin resistance. This thesis investigated the effects of saturated FA on the promoter activity of the glycolytic enzyme, GK, and various transcription factors that may influence the regulation of GK gene expression. These experiments have shown that the saturated FA, palmitate, is capable of decreasing GK promoter activity. In addition, quantitative real-time PCR has shown that palmitate incubation may also regulate GK gene expression through a known FA sensitive transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), which upregulates GK transcription. To parallel the investigations into the mechanisms of FA molecular signalling, further studies of the effect of FAs on metabolic pathway flux were performed. Although certain FAs reduce SREBP-1c transcription in vitro, it is unclear whether this will result in decreased GK activity in vivo where positive effectors of SREBP-1c such as insulin are also present. Under these conditions, it is uncertain if the inhibitory effects of FAs would be overcome by insulin. The effects of a combination of FAs, insulin and glucose on glucose phosphorylation and metabolism in cultured primary rat hepatocytes at concentrations that mimic those in the portal circulation after a meal was examined. It was found that total GK activity was unaffected by an increased concentration of insulin, but palmitate and eicosapentaenoic acid significantly lowered total GK activity in the presence of insulin. Despite the fact that total GK enzyme activity was reduced in response to FA incubation, GK enzyme translocation from the inactive, nuclear bound, to active, cytoplasmic state was unaffected. Interestingly, none of the FAs tested inhibited glucose phosphorylation or the rate of glycolysis when insulin is present. These results suggest that in the presence of insulin the levels of the active, unbound cytoplasmic GK are sufficient to buffer a slight decrease in GK enzyme activity and decreased promoter activity caused by FA exposure. Although a high fat diet has been associated with impaired hepatic glucose metabolism, there is no evidence from this thesis that FAs themselves directly modulate flux through the glycolytic pathway in isolated primary hepatocytes when insulin is also present. Therefore, although FA affected expression of a wide range of genes, including GK, this did not affect glycolytic flux in the presence of insulin. However, it may be possible that a saturated FA-induced decrease in GK enzyme activity when combined with the onset of insulin resistance may promote the dys-regulation of glucose homeostasis and the subsequent development of hyperglycaemia, metabolic syndrome and type 2 diabetes.
Resumo:
Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.
Resumo:
Mr= 367.2, monoclinic, C2, a = 8.429 (1),b= 10.184(2), c= 16.570(2)A, /~= 99.18 (1) °, U= 1404.2 A 3, z = 4, D m = 1.73, D x = 1.74 Mg m -3,Cu K~, 2 = 1.5418 A, g = 2.99 mm -1, F(000) = 764,T= 300K, final R for 1524 observed reflections is0.069. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5)= 1.445 (10) and C(1)-O(5)= 1.424(10). The pyranose sugar ring adopts a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of the dipotassium salt of glucose 1-phosphate. The phosphate ester bond, P-O(1), is 1.641 (6)A, slightly longer than the 'high-energy' P-,.O bond in the monopotassium salt of phosphoenolpyruvate [1.612 (6)A]. Two sodium ions are six coordinated while the third has only five neighbours.
Resumo:
C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).
Resumo:
Increasing concern about global climate warming has accelerated research into renewable energy sources that could replace fossil petroleum-based fuels and materials. Bioethanol production from cellulosic biomass by fermentation with baker s yeast Saccharomyces cerevisiae is one of the most studied areas in this field. The focus has been on metabolic engineering of S. cerevisiae for utilisation of the pentose sugars, in particular D-xylose that is abundant in the hemicellulose fraction of biomass. Introduction of a heterologous xylose-utilisation pathway into S. cerevisiae enables xylose fermentation, but ethanol yield and productivity do not reach the theoretical level. In the present study, transcription, proteome and metabolic flux analyses of recombinant xylose-utilising S. cerevisiae expressing the genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis and the endogenous xylulokinase were carried out to characterise the global cellular responses to metabolism of xylose. The aim of these studies was to find novel ways to engineer cells for improved xylose fermentation. The analyses were carried out from cells grown on xylose and glucose both in batch and chemostat cultures. A particularly interesting observation was that several proteins had post-translationally modified forms with different abundance in cells grown on xylose and glucose. Hexokinase 2, glucokinase and both enolase isoenzymes 1 and 2 were phosphorylated differently on the two different carbon sources studied. This suggests that phosphorylation of glycolytic enzymes may be a yet poorly understood means to modulate their activity or function. The results also showed that metabolism of xylose affected the gene expression and abundance of proteins in pathways leading to acetyl-CoA synthesis and altered the metabolic fluxes in these pathways. Additionally, the analyses showed increased expression and abundance of several other genes and proteins involved in cellular redox reactions (e.g. aldo-ketoreductase Gcy1p and 6-phosphogluconate dehydrogenase) in cells grown on xylose. Metabolic flux analysis indicated increased NADPH-generating flux through the oxidative part of the pentose phosphate pathway in cells grown on xylose. The most importantly, results indicated that xylose was not able to repress to the same extent as glucose the genes of the tricarboxylic acid and glyoxylate cycles, gluconeogenesis and some other genes involved in the metabolism of respiratory carbon sources. This suggests that xylose is not recognised as a fully fermentative carbon source by the recombinant S. cerevisiae that may be one of the major reasons for the suboptimal fermentation of xylose. The regulatory network for carbon source recognition and catabolite repression is complex and its functions are only partly known. Consequently, multiple genetic modifications and also random approaches would probably be required if these pathways were to be modified for further improvement of xylose fermentation by recombinant S. cerevisiae strains.
Resumo:
Background: Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA) and phosphotransacetylase (Pta), key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results: Here we report kinetic characterization of S. typhimurium AckA (StAckA) and structures of its unliganded (Form-I, 2.70 angstrom resolution) and citrate-bound (Form-II, 1.90 angstrom resolution) forms. The enzyme showed broad substrate specificity with k(cat)/K-m in the order of acetate > propionate > formate. Further, the K-m for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis) more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5'-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic beta beta beta alpha beta alpha beta alpha topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA). Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230-300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these enzymes. Conclusions: The biochemical and structural characterization of StAckA reported here provides insights into the biochemical specificity, overall fold, thermal stability, molecular basis of ligand binding and inter-domain motion in AckA family of enzymes. Dramatic conformational differences observed between unliganded and citrate-bound forms of StAckA led to identification of a putative ligand-binding pocket at the dimeric interface of StAckA with implications for enzymatic function.
Resumo:
As associações entre obesidade, doença hepática gordurosa não alcoólica (NAFLD) e diabetes mellitus tipo 2 (DM2) são bem estabelecidas, e o sistema renina-angiotensina (SRA) pode proporcionar uma ligação entre eles. O bloqueio do SRA em diferentes níveis pode estar relacionado a respostas na resistência à insulina, remodelagem do pâncreas e do fígado em um modelo de obesidade induzida por dieta. Camundongos C57BL/6 foram alimentados com uma dieta hiperlipídica (HF) durante oito semanas e depois tratados com alisquireno (50 mg/kg/dia), enalapril (30 mg/kg/dia) ou losartana (10 mg/kg/dia) por um período adicional de seis semanas. As drogas foram incorporadas na dieta. Avaliou-se a massa corporal (MC), pressão arterial, consumo e gasto energético (GE), metabolismo da glicose e lipídico, histopatologia pancreática e hepática, análise hormonal, imunohistoquímica, perfil gênico e/ou proteico do SRA no pâncreas, gliconeogênese hepática, sinalização da insulina, oxidação e acúmulo lipídico. Todos os inibidores do SRA reduziram significativamente o aumento da pressão arterial nos camundongos alimentados com dieta HF. O tratamento com enalapril, mas não alisquireno ou losartana, reduziu o ganho de MC e a ingestão alimentar; aumentou o GE; amenizou a intolerância à glicose e resistência à insulina; melhorou a massa de células alfa e beta; impediu a redução da adiponectina plasmática e restaurou a sensibilidade à leptina. Além disso, o tratamento com enalapril melhorou a expressão proteica nas ilhotas pancreáticas de Pdx1, GLUT2, ECA2 e do receptor Mas. O tratamento com losartana apresentou uma elevação na expressão proteica de AT2R no pâncreas. No fígado, a administração de enalapril atenuou a esteatose hepática, o acúmulo de triglicerídeos e preveniu o aumento dos níveis de PEPCK, G6Pase e do GLUT2. Do mesmo modo, o enalapril melhorou a transdução dos sinais da insulina através da via IRS-1/Akt, bem como reduziu os níveis de expressão gênica e/ou proteica de PPAR-gama, SREBP-1c e FAS. Esses resultados sugerem que a inibição da ECA com enalapril atenuou muitos efeitos deletérios provocados pelo consumo da dieta HF, incluindo: normalização da morfologia e função das ilhotas pancreáticas, proteção contra a resistência à insulina e acúmulo de lipídios no fígado. Estes efeitos protetores do enalapril podem ser atribuídos, principalmente, à redução no ganho de MC e ingestão alimentar, aumento do GE, ativação do eixo ECA2/Ang(1-7)/receptor Mas e dos níveis de adiponectina, o que promove uma melhora na ação hepática da insulina e leptina, normalização da gliconeogênese, amenizando a NAFLD.
Resumo:
Hábitos inadequados no estilo de vida, pelo consumo exacerbado de dietas ricas em gorduras e açúcares (frutose e sacarose), correlacionam-se positivamente com o desenvolvimento da obesidade, da resistência à insulina (RI) e da esteatose hepática não alcoólica (NAFLD). O estudo teve como objetivo avaliar a magnitude dos efeitos da administração crônica de dietas ricas em gordura e/ou frutose, e ainda, comparar os efeitos dos açúcares isoladamente (frutose e sacarose) sob as alterações bioquímicas, o perfil inflamatório, as respostas morfofuncionais e as expressões proteicas e gênicas de fatores de transcrição envolvidos na lipogênese, na beta-oxidação, na gliconeogênese e no estresse oxidativo no fígado. Camundongos machos C57BL/6 foram divididos em dois experimentos: 1) Dieta controle/standard chow (SC), dieta high fat (HF 42%), dieta high frutose (HFr 34%) e dieta high fat + high frutose (HFHFr - 42% fat + 34% frutose) por 16 semanas; 2) Dieta controle/standard chow (SC), dieta high frutose (HFru 50%) e dieta high sacarose (HSu 50%) por 15 semanas. Ao final dos experimentos foram observados: 1) Não houve diferença na massa corporal entre os animais HFr e SC, só foi observado ganho de peso nos grupos HF e HFHFr. Houve ainda aumento do colesterol total, dos triglicerídeos plasmáticos e hepáticos e RI nos grupos HF, HFr e HFHFr. No fígado, foi observado NAFLD com aumento na expressão de SREBP-1c e PPAR-γ, e redução de PPAR-α. A gliconeogênese mediada pelo GLUT-2 e PEPCK também foi aumentada nos grupos HF, HFr e HFHFr em relação ao grupo SC. Áreas de necroinflamação também foram observadas nos animais HFr e HFHFr; 2) Não houve diferença na massa corporal entre os grupos SC, HFru e HSu. Porém, houve aumento do colesterol total, dos triglicerídeos plasmáticos e hepáticos, da RI, das adipocinas (IL-6, resistina, MCP-1 e leptina), e redução da adiponectina. No fígado, abundante NAFLD com predominância da expressão proteica e gênica de SREBP-1c, PPAR-γ e redução de PPAR-α; e desequilíbrio antioxidante com redução da SOD, da Catalase e da GRx nos grupos HFru e HSu quando comparados ao SC. Não houve diferença na GPx entre os três grupos. Ainda foi observado aumento na expressão proteica de G6Pase, PEPCK e GLUT-2, envolvidos na gliconeogênese hepática nos grupos HFru e HSu. Áreas de necroinflamação, característico da transição NAFLD-NASH, também foram observados. Os resultados permitem concluir que, independente do aumento da massa corporal, a administração crônica de dietas ricas em frutose e sacarose tem efeitos similares aos observados com o consumo de dieta hiperlipídica. Parece que a RI e a NAFLD sejam os precursores destas alterações.