994 resultados para phase resolution lifetime determinations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solid-phase enzyme immunoassay using both mouse monoclonal and goat polyclonal antibodies against carcinoembryonic antigen (CEA) was developed. The assay detects 0.6 to 1.2 ng of CEA per ml of serum and has 3 incubation steps which can be performed in 1 day. Polystyrene balls coated with polyclonal goat anti-CEA antibodies are first incubated with heat-extracted serum samples. Bound CEA is then detected by addition of mouse monoclonal antibodies, followed by goat IgG anti-mouse IgG1 coupled to alkaline phosphatase. Results with this enzyme immunoassay using monoclonal antibodies (M-EIA) have been compared with those obtained by the conventional inhibition radioimmunoassay (RIA) using goat antiserum. Three hundred and eighty serum samples from 167 patients with malignant or non-malignant diseases and from 134 normal individuals with or without heavy smoking habits were analyzed by the 2 assays. Excellent correlation between the results of the 2 assays was obtained, but the M-EIA, using monoclonal antibodies from a single hybridoma, did not discriminate better than the conventional RIA between CEA produced by different types of carcinoma and between CEA associated with malignant or non-malignant diseases. Follow-up studies of several patients by sequential CEA determinations with the 2 assays showed that the M-EIA was as accurate as the RIA for the detection of tumor recurrences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: A rapid and simple HPLC-MS method was developed for the simultaneousdetermination of antidementia drugs, including donepezil, galantamine, rivastigmineand its major metabolite NAP 226 - 90, and memantine, for TherapeuticDrug Monitoring (TDM). In the elderly population treated with antidementiadrugs, the presence of several comorbidities, drug interactions resulting frompolypharmacy, and variations in drug metabolism and elimination, are possiblefactors leading to the observed high interindividual variability in plasma levels.Although evidence for the benefit of TDM for antidementia drugs still remains tobe demonstrated, an individually adapted dosage through TDM might contributeto minimize the risk of adverse reactions and to increase the probability of efficienttherapeutic response. Methods: A solid-phase extraction procedure with amixed-mode cation exchange sorbent was used to isolate the drugs from 0.5 mL ofplasma. The compounds were analyzed on a reverse-phase column with a gradientelution consisting of an ammonium acetate buffer at pH 9.3 and acetonitrile anddetected by mass spectrometry in the single ion monitoring mode. Isotope-labeledinternal standards were used for quantification where possible. The validatedmethod was used to measure the plasma levels of antidementia drugs in 300patients treated with these drugs. Results: The method was validated accordingto international standards of validation, including the assessment of the trueness(-8 - 11 %), the imprecision (repeatability: 1-5%, intermediate imprecision:2 - 9 %), selectivity and matrix effects variability (less than 6 %). Furthermore,short and long-term stability of the analytes in plasma was ascertained. Themethod proved to be robust in the calibrated ranges of 1 - 300 ng/mL for rivastigmineand memantine and 2 - 300 mg/mL for donepezil, galantamine and NAP226 - 90. We recently published a full description of the method (1). We found ahigh interindividual variability in plasma levels of these drugs in a study populationof 300 patients. The plasma level measurements, with some preliminaryclinical and pharmacogenetic results, will be presented. Conclusion: A simpleLC-MS method was developed for plasma level determination of antidementiadrugs which was successfully used in a clinical study with 300 patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a microscopic method that determines quantitative optical properties beyond the optical diffraction limit and allows direct imaging of unstained living biological specimens. In established holographic microscopy, complex fields are measured using interferometric detection, allowing diffraction-limited phase measurements. Here, we show that non-invasive optical nanoscopy can achieve a lateral resolution of 90 nm by using a quasi-2 pi-holographic detection scheme and complex deconvolution. We record holograms from different illumination directions on the sample plane and observe subwavelength tomographic variations of the specimen. Nanoscale apertures serve to calibrate the tomographic reconstruction and to characterize the imaging system by means of the coherent transfer function. This gives rise to realistic inverse filtering and guarantees true complex field reconstruction. The observations are shown for nanoscopic porous cell frustule (diatoms), for the direct study of bacteria (Escherichia coil), and for a time-lapse approach to explore the dynamics of living dendritic spines (neurones).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a differential synthetic apertureradar (SAR) interferometry (DIFSAR) approach for investigatingdeformation phenomena on full-resolution DIFSAR interferograms.In particular, our algorithm extends the capabilityof the small-baseline subset (SBAS) technique that relies onsmall-baseline DIFSAR interferograms only and is mainly focusedon investigating large-scale deformations with spatial resolutionsof about 100 100 m. The proposed technique is implemented byusing two different sets of data generated at low (multilook data)and full (single-look data) spatial resolution, respectively. Theformer is used to identify and estimate, via the conventional SBAStechnique, large spatial scale deformation patterns, topographicerrors in the available digital elevation model, and possibleatmospheric phase artifacts; the latter allows us to detect, onthe full-resolution residual phase components, structures highlycoherent over time (buildings, rocks, lava, structures, etc.), as wellas their height and displacements. In particular, the estimation ofthe temporal evolution of these local deformations is easily implementedby applying the singular value decomposition technique.The proposed algorithm has been tested with data acquired by theEuropean Remote Sensing satellites relative to the Campania area(Italy) and validated by using geodetic measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre- and postnatal corticosteroids are often used in perinatal medicine to improve pulmonary function in preterm infants. To mimic this clinical situation, newborn rats were treated systemically with dexamethasone (Dex), 0.1-0.01 mg/kg/day on days P1-P4. We hypothesized that postnatal Dex may have an impact on alveolarization by interfering with extracellular matrix proteins and cellular differentiation. Morphological alterations were observed on 3D images obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. Alveolarization was quantified stereologically by estimating the formation of new septa between days P4 and P60. The parenchymal expression of tenascin-C (TNC), smooth muscle actin (SMA), and elastin was measured by immunofluorescence and gene expression for TNC by qRT-PCR. After Dex treatment, the first phase of alveolarization was significantly delayed between days P6 and P10, whereas the second phase was accelerated. Elastin and SMA expressions were delayed by Dex treatment, whereas TNC expression was delayed and prolonged. A short course of neonatal steroids impairs the first phase of alveolarization, most likely by altering the TNC and elastin expression. Due to an overshooting catch-up during the second phase of alveolarization, the differences disappear when the animals reach adulthood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the influence of Nb doping on the TiO2 anatase-to-rutile phase transition, using combined transmission electron microscopy, Raman spectroscopy, x-ray diffraction and selected area electron diffraction analysis. This approach enabled anatase-to-rutile phase transition hindering to be clearly observed for low Nb-doped TiO2 samples. Moreover, there was clear grain growth inhibition in the samples containing Nb. The use of high resolution transmission electron microscopy with our samples provides an innovative perspective compared with previous research on this issue. Our analysis shows that niobium is segregated from the anatase structure before and during the phase transformation, leading to the formation of NbO nanoclusters on the surface of the TiO2 rutile nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of liquid-crystal panels for use in commercial equipment has been aimed at improving the pixel resolution and the display efficiency. These improvements have led to a reduction in the thickness of such devices, among other outcomes, that involves a loss in phase modulation. We propose a modification of the classical phase-only filter to permit displays in VGA liquid-crystal panels with a constant amplitude modulation and less than a 2¿(PI) phase modulation. The method was tested experimentally in an optical setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model that describes the behavior of low-resolution Fresnel lenses encoded in any low-resolution device (e.g., a spatial light modulator) is developed. The effects of low-resolution codification, such the appearance of new secondary lenses, are studied for a general case. General expressions for the phase of these lenses are developed, showing that each lens behaves as if it were encoded through all pixels of the low-resolution device. Simple expressions for the light distribution in the focal plane and its dependence on the encoded focal length are developed and commented on in detail. For a given codification device an optimum focal length is found for best lens performance. An optimization method for codification of a single lens with a short focal length is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic resonance imaging with preceding tissue tagging is a robust method for assessing cardiac motion of the entire heartbeat cycle with a high degree of accuracy. One limitation of this technique, however, is the low resolution of the obtained displacement map of the labeled points within the myocardium. By a new tagging technique, which is based on the combination of two or more measurements of the same slice but with different grid positions, a highly improved resolution of cardiac motion data can be achieved. In combination with a multi-heart-phase echo-planar imaging sequence, such images with doubled grid frequency can be acquired in two short breath-hold periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study evaluated the potential of using the phase of T2* weighted MR images to characterize myelination during brain development and pathology in rodents at 9.4 T. Phase contrast correlated with myelin content assessed by histology and suggests that most contrast between white and cortical gray matter is modulated by myelin. Ex vivo experiments showed that gray-white matter phase contrast remains unchanged after iron extraction. In dysmyelinated shiverer mice, phase imaging correlated strongly with myelin staining, showing reduced contrast between white and gray matter when compared to healthy controls. We conclude that high-resolution phase images, acquired at high field, allow assessment of myelination and dysmyelination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Triassic-Jurassic boundary is generally considered as one of the major extinctions in the history of Phanerozoic. The high-resolution ammonite correlations and carbon isotope marine record in the New York Canyon area allow to distinguish two negative carbon excursions across this boundary with different paleoenvironmental meanings. The Late Rhaetian negative excursion is related to the extinction and regressive phase. The Early Hettangian delta(13)C(org) negative excursion is associated with a major floristic turnover and major ammonite and radiolarian radiation. The end-Triassic extinction-Early Jurassic recovery is fully compatible with a volcanism-triggered crisis, probably related to the Central Atlantic Magmatic Province. The main environmental stress might have been generated by repeated release of SO(2) gas, heavy metals emissions, darkening, and subsequent cooling. This phase was followed by a major long-term CO(2) accumulation during the Early Hettangian with development of nutrient-rich marine waters favouring the recovery of productivity and deposition of black shales. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project utilized information from ground penetrating radar (GPR) and visual inspection via the pavement profile scanner (PPS) in proof-of-concept trials. GPR tests were carried out on a variety of portland cement concrete pavements and laboratory concrete specimens. Results indicated that the higher frequency GPR antennas were capable of detecting subsurface distress in two of the three pavement sites investigated. However, the GPR systems failed to detect distress in one pavement site that exhibited extensive cracking. Laboratory experiments indicated that moisture conditions in the cracked pavement probably explain the failure. Accurate surveys need to account for moisture in the pavement slab. Importantly, however, once the pavement site exhibits severe surface cracking, there is little need for GPR, which is primarily used to detect distress that is not observed visually. Two visual inspections were also conducted for this study by personnel from Mandli Communications, Inc., and the Iowa Department of Transportation (DOT). The surveys were conducted using an Iowa DOT video log van that Mandli had fitted with additional equipment. The first survey was an extended demonstration of the PPS system. The second survey utilized the PPS with a downward imaging system that provided high-resolution pavement images. Experimental difficulties occurred during both studies; however, enough information was extracted to consider both surveys successful in identifying pavement surface distress. The results obtained from both GPR testing and visual inspections were helpful in identifying sites that exhibited materials-related distress, and both were considered to have passed the proof-of-concept trials. However, neither method can currently diagnose materials-related distress. Both techniques only detected the symptoms of materials-related distress; the actual diagnosis still relied on coring and subsequent petrographic examination. Both technologies are currently in rapid development, and the limitations may be overcome as the technologies advance and mature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impressive developments in X-ray imaging are associated with X-ray phase contrast computed tomography based on grating interferometry, a technique that provides increased contrast compared with conventional absorption-based imaging. A new "single-step" method capable of separating phase information from other contributions has been recently proposed. This approach not only simplifies data-acquisition procedures, but, compared with the existing phase step approach, significantly reduces the dose delivered to a sample. However, the image reconstruction procedure is more demanding than for traditional methods and new algorithms have to be developed to take advantage of the "single-step" method. In the work discussed in this paper, a fast iterative image reconstruction method named OSEM (ordered subsets expectation maximization) was applied to experimental data to evaluate its performance and range of applicability. The OSEM algorithm with different subsets was also characterized by comparison of reconstruction image quality and convergence speed. Computer simulations and experimental results confirm the reliability of this new algorithm for phase-contrast computed tomography applications. Compared with the traditional filtered back projection algorithm, in particular in the presence of a noisy acquisition, it furnishes better images at a higher spatial resolution and with lower noise. We emphasize that the method is highly compatible with future X-ray phase contrast imaging clinical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a spatiotemporal adaptive multiscale algorithm, which is based on the Multiscale Finite Volume method. The algorithm offers a very efficient framework to deal with multiphysics problems and to couple regions with different spatial resolution. We employ the method to simulate two-phase flow through porous media. At the fine scale, we consider a pore-scale description of the flow based on the Volume Of Fluid method. In order to construct a global problem that describes the coarse-scale behavior, the equations are averaged numerically with respect to auxiliary control volumes, and a Darcy-like coarse-scale model is obtained. The space adaptivity is based on the idea that a fine-scale description is only required in the front region, whereas the resolution can be coarsened elsewhere. Temporal adaptivity relies on the fact that the fine-scale and the coarse-scale problems can be solved with different temporal resolution (longer time steps can be used at the coarse scale). By simulating drainage under unstable flow conditions, we show that the method is able to capture the coarse-scale behavior outside the front region and to reproduce complex fluid patterns in the front region.