901 resultados para pesticide trials
Resumo:
Concentrations of several pesticides were monitored in a paddy block and in the Kose river, which drains a paddy catchment in Fukuoka prefecture, Japan. Detailed water management in the block was also monitored to evaluate its effect on the pesticide contamination. The concentrations of applied pesticides in both block irrigation channel and drainage canal increased to tens of μg/L shortly after their applications. The increase in pesticide concentrations was well correlated with the open of irrigation and drainage gates in the pesticide-applied paddy plots only 1–3 days after pesticide application. High concentration of other pesticides, mainly herbicides, was also observed in the inflow irrigation and drainage waters, confirming the popularity of early irrigation and drainage after pesticide application in the area. The requirement of holding water after pesticide application (as a best management practice) issued by the authority was thus not properly followed. In a larger scale of the paddy catchment, the concentration of pesticides also increased significantly to several μg/L in the water of the Kose river shortly after the start of the pesticide application period either in downstream or mid–upstream areas, confirming the effect of current water management to the water quality. More extension and enforcement on water management should be done in order to control pesticide pollution from rice cultivation in Japan.
Resumo:
BACKGROUND: Monitoring studies revealed high concentrations of pesticides in the drainage canal of paddy fields. It is important to have a way to predict these concentrations in different management scenarios as an assessment tool. A simulation model for predicting the pesticide concentration in a paddy block (PCPF-B) was evaluated and then used to assess the effect of water management practices for controlling pesticide runoff from paddy fields. RESULTS: The PCPF-B model achieved an acceptable performance. The model was applied to a constrained probabilistic approach using the Monte Carlo technique to evaluate the best management practices for reducing runoff of pretilachlor into the canal. The probabilistic model predictions using actual data of pesticide use and hydrological data in the canal showed that the water holding period (WHP) and the excess water storage depth (EWSD) effectively reduced the loss and concentration of pretilachlor from paddy fields to the drainage canal. The WHP also reduced the timespan of pesticide exposure in the drainage canal. CONCLUSIONS: It is recommended that: (1) the WHP be applied for as long as possible, but for at least 7 days, depending on the pesticide and field conditions; (2) an EWSD greater than 2 cm be maintained to store substantial rainfall in order to prevent paddy runoff, especially during the WHP.
Resumo:
This chapter provides an overview of the Japanese regulatory issues regarding pesticide use in rice paddies and an introduction of the new pesticide registration program. In addition, the experience of the environmental monitoring of pesticides and the modeling approaches used for the calculation of predicted environmental concentrations (PECs) in surface water and ground water systems adjacent to rice paddies in Japan are also discussed. Japan has been one of the major pesticide users in the world. Although having a long history in rice cultivation, the pesticide exposure assessment for paddy rice production received less attention compared with EU and US. Applications of up-to-date techniques and the development of realistic assessment procedures under specific climatic conditions as well as mitigation management practices for controlling pesticide contamination are important for an environmental-friendly rice production. Through the international cooperation and research exchanges, advances in pesticide risk assessment for rice paddies in Asian region and other rice-growing areas in the world would contribute to sustainable rice production. Transplanting of rice seedlings grows almost all rice paddies in Japan. The land preparation starts around April and June, and the harvest season lasts from August to October depending on the region and the rice varieties. Most of the rice paddies are treated with herbicides and other crop protection products, such as fungicides and insecticides that are applied during the crop season accordingly. Newly developed insecticides and fungicides are also applied during seedbed preparation.
Resumo:
Pesticide use in paddy rice production may contribute to adverse ecological effects in surface waters. Risk assessments conducted for regulatory purposes depend on the use of simulation models to determine predicted environment concentrations (PEC) of pesticides. Often tiered approaches are used, in which assessments at lower tiers are based on relatively simple models with conservative scenarios, while those at higher tiers have more realistic representations of physical and biochemical processes. This chapter reviews models commonly used for predicting the environmental fate of pesticides in rice paddies. Theoretical considerations, unique features, and applications are discussed. This review is expected to provide information to guide model selection for pesticide registration, regulation, and mitigation in rice production areas.
Resumo:
A flexible and simple Bayesian decision-theoretic design for dose-finding trials is proposed in this paper. In order to reduce the computational burden, we adopt a working model with conjugate priors, which is flexible to fit all monotonic dose-toxicity curves and produces analytic posterior distributions. We also discuss how to use a proper utility function to reflect the interest of the trial. Patients are allocated based on not only the utility function but also the chosen dose selection rule. The most popular dose selection rule is the one-step-look-ahead (OSLA), which selects the best-so-far dose. A more complicated rule, such as the two-step-look-ahead, is theoretically more efficient than the OSLA only when the required distributional assumptions are met, which is, however, often not the case in practice. We carried out extensive simulation studies to evaluate these two dose selection rules and found that OSLA was often more efficient than two-step-look-ahead under the proposed Bayesian structure. Moreover, our simulation results show that the proposed Bayesian method's performance is superior to several popular Bayesian methods and that the negative impact of prior misspecification can be managed in the design stage.
Resumo:
Yao, Begg, and Livingston (1996, Biometrics 52, 992-1001) considered the optimal group size for testing a series of potentially therapeutic agents to identify a promising one as soon as possible for given error rates. The number of patients to be tested with each agent was fixed as the group size. We consider a sequential design that allows early acceptance and rejection, and we provide an optimal strategy to minimize the sample sizes (patients) required using Markov decision processes. The minimization is under the constraints of the two types (false positive and false negative) of error probabilities, with the Lagrangian multipliers corresponding to the cost parameters for the two types of errors. Numerical studies indicate that there can be a substantial reduction in the number of patients required.
Resumo:
The goal of this article is to provide a new design framework and its corresponding estimation for phase I trials. Existing phase I designs assign each subject to one dose level based on responses from previous subjects. Yet it is possible that subjects with neither toxicity nor efficacy responses can be treated at higher dose levels, and their subsequent responses to higher doses will provide more information. In addition, for some trials, it might be possible to obtain multiple responses (repeated measures) from a subject at different dose levels. In this article, a nonparametric estimation method is developed for such studies. We also explore how the designs of multiple doses per subject can be implemented to improve design efficiency. The gain of efficiency from "single dose per subject" to "multiple doses per subject" is evaluated for several scenarios. Our numerical study shows that using "multiple doses per subject" and the proposed estimation method together increases the efficiency substantially.
Resumo:
A decision-theoretic framework is proposed for designing sequential dose-finding trials with multiple outcomes. The optimal strategy is solvable theoretically via backward induction. However, for dose-finding studies involving k doses, the computational complexity is the same as the bandit problem with k-dependent arms, which is computationally prohibitive. We therefore provide two computationally compromised strategies, which is of practical interest as the computational complexity is greatly reduced: one is closely related to the continual reassessment method (CRM), and the other improves CRM and approximates to the optimal strategy better. In particular, we present the framework for phase I/II trials with multiple outcomes. Applications to a pediatric HIV trial and a cancer chemotherapy trial are given to illustrate the proposed approach. Simulation results for the two trials show that the computationally compromised strategy can perform well and appear to be ethical for allocating patients. The proposed framework can provide better approximation to the optimal strategy if more extensive computing is available.
Resumo:
Stallard (1998, Biometrics 54, 279-294) recently used Bayesian decision theory for sample-size determination in phase II trials. His design maximizes the expected financial gains in the development of a new treatment. However, it results in a very high probability (0.65) of recommending an ineffective treatment for phase III testing. On the other hand, the expected gain using his design is more than 10 times that of a design that tightly controls the false positive error (Thall and Simon, 1994, Biometrics 50, 337-349). Stallard's design maximizes the expected gain per phase II trial, but it does not maximize the rate of gain or total gain for a fixed length of time because the rate of gain depends on the proportion: of treatments forwarding to the phase III study. We suggest maximizing the rate of gain, and the resulting optimal one-stage design becomes twice as efficient as Stallard's one-stage design. Furthermore, the new design has a probability of only 0.12 of passing an ineffective treatment to phase III study.
Resumo:
The purpose of a phase I trial in cancer is to determine the level (dose) of the treatment under study that has an acceptable level of adverse effects. Although substantial progress has recently been made in this area using parametric approaches, the method that is widely used is based on treating small cohorts of patients at escalating doses until the frequency of toxicities seen at a dose exceeds a predefined tolerable toxicity rate. This method is popular because of its simplicity and freedom from parametric assumptions. In this payer, we consider cases in which it is undesirable to assume a parametric dose-toxicity relationship. We propose a simple model-free approach by modifying the method that is in common use. The approach assumes toxicity is nondecreasing with dose and fits an isotonic regression to accumulated data. At any point in a trial, the dose given is that with estimated toxicity deemed closest to the maximum tolerable toxicity. Simulations indicate that this approach performs substantially better than the commonly used method and it compares favorably with other phase I designs.
Resumo:
In Pediatric AIDS Clinical Trials Group 377, antiretroviral therapy-experienced children were randomized to 4 treatment arms that included different combinations of stavudine, lamivudine (3TC), nevirapine (Nvp), nelfinavir (Nfv), and ritonavir (Rtv). Previous treatment with zidovudine (Zdv), didanosine (ddI), or zalcitabine (ddC) was acceptable. Drug resistance ((R)) mutations were assessed before study treatment (baseline) and at virologic failure. Zdv(R), ddI(R), and ddC(R) mutations were detected frequently at baseline but were not associated with virologic failure. Children with drug resistance mutations at baseline had greater reductions in virus load over time than did children who did not. Nvp(R) and 3TC(R) mutations were detected frequently at virologic failure, and Nvp(R) mutations were more common among children receiving 3-drug versus 4-drug Nvp-containing regimens. Children who were maintained on their study regimen after virologic failure accumulated additional Nvp(R) and 3TC(R) mutations plus Rtv(R) and Nfv(R) mutations. However, Rtv(R) and Nfv(R) mutations were detected at unexpectedly low rates.
Resumo:
Suppose two treatments with binary responses are available for patients with some disease and that each patient will receive one of the two treatments. In this paper we consider the interests of patients both within and outside a trial using a Bayesian bandit approach and conclude that equal allocation is not appropriate for either group of patients. It is suggested that Gittins indices should be used (using an approach called dynamic discounting by choosing the discount rate based on the number of future patients in the trial) if the disease is rare, and the least failures rule if the disease is common. Some analytical and simulation results are provided.
Resumo:
We explore the use of Gittins indices to search for near optimality in sequential clinical trials. Some adaptive allocation rules are proposed to achieve the following two objectives as far as possible: (i) to reduce the expected successes lost, (ii) to minimize the error probability at the end. Simulation results indicate the merits of the rules based on Gittins indices for small trial sizes. The rules are generalized to the case when neither of the response densities is known. Asymptotic optimality is derived for the constrained rules. A simple allocation rule is recommended for one-stage models. The simulation results indicate that it works better than both equal allocation and Bather's randomized allocation. We conclude with a discussion of possible further developments.
Resumo:
Modeling of cultivar x trial effects for multienvironment trials (METs) within a mixed model framework is now common practice in many plant breeding programs. The factor analytic (FA) model is a parsimonious form used to approximate the fully unstructured form of the genetic variance-covariance matrix in the model for MET data. In this study, we demonstrate that the FA model is generally the model of best fit across a range of data sets taken from early generation trials in a breeding program. In addition, we demonstrate the superiority of the FA model in achieving the most common aim of METs, namely the selection of superior genotypes. Selection is achieved using best linear unbiased predictions (BLUPs) of cultivar effects at each environment, considered either individually or as a weighted average across environments. In practice, empirical BLUPs (E-BLUPs) of cultivar effects must be used instead of BLUPs since variance parameters in the model must be estimated rather than assumed known. While the optimal properties of minimum mean squared error of prediction (MSEP) and maximum correlation between true and predicted effects possessed by BLUPs do not hold for E-BLUPs, a simulation study shows that E-BLUPs perform well in terms of MSEP.
Resumo:
A variety of materials were trialed as supported permeable covers using a series of laboratory-scale anaerobic digesters. Efficacy of cover performance was assessed in terms of impact on odour and greenhouse gas emission rate, and the characteristics of anaerobic liquor. Data were collected over a 12-month period. Initially the covers reduced the rate of odour emission 40-100 times relative to uncovered digesters. After about three months, this decreased to about a threefold reduction in odour emission rate, which was maintained over the remainder of the trial. The covers did not alter methane emission rates. Carbon dioxide emission rates varied according to cover type. Performance of the covers was attributed to the physical characteristics of the cover materials and changes in liquor composition. The reductions in odour emission indicate that these covers offer a cost-effective method for odour control.