933 resultados para peroxidase enzyme
Resumo:
Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Soluble, ionically bound peroxidase (POD) and polyphenoloxidase (PPO) were extracted from the pulp of peach fruit during ripening at 20degreesC Ionically bound form was purified 6.1 -fold by DEAE-cellulose and Sephadex G-100 chromatography. The purified enzyme showed only one peak of activity on Sephadex G-100 and PAGE revealed that the enzyme was purified by the procedures adopted. The purified enzyme showed a molecular weight of 29000 Da, maximum activity at pH 5.0 and at 40degreesC the calculated apparent activation energy (Ea) for the reaction was 10.04 kcal/mol. The enzyme was heat-labile in the temperature range of 60 to 75degreesC with a fast inactivation at 75degreesC Measurement of residual activity showed a stabilizing effect of sucrose at various temperature/sugar concentrations (0, 10, 20 %, w/w), with an activation energy (Ea) for inactivation increasing with sucrose concentration from 0 to 20% (w/w). The Km and V-max values were 9.35 and 15.38 mM for O-dianisidine and H2O2, respectively. The bound enzyme was inhibited competitively by (.)ferulic, caffeic and protocatechuic acids with different values of Ki,. L-cysteine, p-coumaric and indolacetic acid and Fe++ also inhibited the enzyme but at a lower grade. N-ethylmaleimide and p-CMB were not effective to inhibit the enzyme demonstrating the non-essentiality of SH groups.
Resumo:
Um ensaio de imunoadsorção enzimática para detecção de anticorpos contra Leishmania chagasi, utilizando antígeno total de formas promastigotas lisados foi desenvolvido. Cinqüenta cães com sintomas clínicos de leishmaniose visceral foram examinados. Esta técnica utilizou anti-IgG de cão conjugado a peroxidase ou proteína A conjugado a peroxidase. Foi verificado que nos animais positivos diagnosticados por exame parasitológico direto o ensaio ELISA utilizando proteína A conjugada a peroxidase (média da densidade óptica ± desvio padrão 2,078 ± 0,631) detecta mais anticorpos do que o sistema utilizando anti-IgG de cão conjugado a peroxidase (média da densidade óptica ± desvio padrão 1,008 ± 0,437), enquanto para os animais negativos o resultado obtido nos dois sistemas de detecção são similares. Esse resultado sugere que o sistema de ELISA utilizando proteína A conjugado a peroxidase pode ser útil na detecção de animais na fase aguda da infecção e desta forma auxiliar na identificação dos animais positivos e no controle desta importante zoonose.
Resumo:
Myriophyllum aquaticum é uma planta perene, herbácea, que pode se desenvolver totalmente submersa ou com a porção terminal dos ramos acima da superfície da água. É também considerada uma planta daninha que possui elevado potencial de colonização, o qual, dependendo da densidade populacional, pode causar aumento no teor de matéria orgânica e redução de oxigênio na água, comprometendo a qualidade da água e seus usos múltiplos. O objetivo do presente trabalho foi verificar a influência do cobre na atividade da pirogalol peroxidase de plantas de M. aquaticum submetidas à solução nutritiva contendo concentrações de cobre de 1,2; 11,2; 21,2; 31,2; e 41,2 µg L-1. O experimento foi conduzido em um delineamento experimental inteiramente casualizado, com quatro repetições e cinco tratamentos, aos quais as plantas foram submetidas durante 21 dias. Aos 81 dias após a instalação das mudas em solução nutritiva contendo os diferentes níveis de cobre, as folhas foram colhidas a partir do ápice da planta até o final do ramo, que não estavam em contato com a solução. Esse material fresco foi envolvido por plástico transparente e papel-alumínio e, a seguir, congelado em nitrogênio líquido, sendo armazenado em freezer a -20 ºC até o momento da determinação da atividade da enzima pirogalol peroxidase. A atividade da enzima foi progressiva com o aumento das doses de cobre. As plantas cultivadas com 40 µg L-1 de Cu2+ após três semanas, com base em avaliação visual, apresentaram redução no desenvolvimento.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Enzimas Peroxidases são heme-proteínas encontradas nos diferentes organismos vivos, especialmente vegetais, apresentam importante papel fisiológico/bioquímico como proteção contra microorganismos invasores. A soja, um dos mais importantes produtos para o agronegócio brasileiro apresenta na casca de suas sementes (subproduto) alta atividade de peroxidase, denominada soybean peroxidase,com potencial de utilização em métodos analíticos clínicos. A proposta do trabalho foi aplicar o planejamento fatorial para otimização das condições extração da enzima, definição das condições ótimas de atividade (pH e temperatura), utilizando metodologia de superfície de resposta. Os dados obtidos com clara definição foram: i) extração em pó cetonico, ii) meio reacional: pH 3,3, volume da amostra contendo a enzima 330 µL - 340 µL, peróxido de hidrogênio 4,2 mmol.L-1 150 µL, tempo de reação 20 segundos, temperatura 50º C, substrato guaiacol 30mmol.L-1 300 µL, e 0,1 mol.L-1 de NaCl. O uso da dessa metodologia para definição das condições de extração e estudos cinético-enzimáticos da peroxidase de soja foram eficientes e mais precisos, comparado a metodologia de variações/repetições (tentativa e erro).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Peroxidase from peach fruit was purified 28.9-fold by DEAE-cellulose, Sephadex G-100 and hydroxylapatite chromatography. The purified enzyme showed only one peak of activity with an optimum pH of 5.0 and temperature of 40 degreesC. The calculated activation energy (Ea) for the reaction was 7.97 kcal/mol. The enzyme was heat-labile in the temperature range of 60 to 80 degreesC with a fast inactivation at 80 degreesC. PAGE of the inactivation course at 70 degreesC showed only one band of activity. Different sugars increased the heat stability of the activity in the following order: sucrose>lactose>glucose>fructose. Measurement of residual activity showed a stabilizing effect of sucrose at various temperature/sugar concentrations (10 to 40%, w/w) with the Ea for inactivation increasing with sucrose concentration from 0 to 20% (w/w). After inactivation at 70 degreesC and 75 degreesC the enzyme was able to be reactivated by up to 40% of the initial activity when stared at 30 degreesC.
Resumo:
The enzyme horseradish peroxidase HRP (EC:1.11.1.7), has both acid and basic isoenzymes, catalyses a wide range of reactions (acting as an oxiredutase or an oxidase) and is thought capable of one- or two-electrons oxidations depending on the substrate employed. Today, the methodology for these assay can be chemiluminescent reactions and enhanced chemiluminescent. The enhanced chemiluminescent assay with system HRP, luminol, peroxide and an enhancer has provided the basis for a convenient and sensitive assay for peroxidase and peroxidase conjugates, DNA probe and blotting assay. It is particularly more advantageous than the others, because is very rapid, more sensitive (attomoles), easy to do and technically simple, and is relatively specific for HRP (reduces the effect of the interference).
Resumo:
A new methodology for soluble oxalic acid determination in grass samples was developed using a two enzyme reactor in an FIA system. The reactor consisted of 3 U of oxalate oxidase and 100 U of peroxidase immobilized on Sorghum vulgare seeds activated with glutaraldehyde. The carbon dioxide was monitored spectrophotometrically, after reacting with an acid-base indicator (Bromocresol Purple) after it permeated through a PTFE membrane. A linear response range was observed between 0.25 and 1.00mmol l-1 of oxalic acid; the data was fit by the equation A=-0.8(±1.5)+ 57.2(±2.5)[oxalate], with a correlation coefficient of 0.9971 and a relative standard deviation of 2% for n=5. The variance for a 0.25 mmol l-1 oxalic acid standard solution was lower than 4% for 11 measurements. The FIA system allows analysis of 20 samples per hour without prior treatment. The proposed method showed a good correlation with that of the Sigma Kit.
Resumo:
The localization of peroxidase activity in different cell regions is used as a criterion for classifying the stage of maturity of mammalian mononuclear phagocytes, with a positive peroxidase reaction indicating the presence of monoblasts, promonocytes, monocytes, and macrophages. Peroxidase activity was observed ultrastructurally in the circulating blood of pacu fish (Piaractus mesopotamicus), identifying monoblasts, promonocytes, monocytes, and macrophages. These observations suggest that differentiation of mononuclear phagocytes occurs in the blood circulation of fish, whereas in mammals, monoblasts and promonocytes are detected in bone marrow, with only monocytes detected in circulating blood and differentiation into macrophages occurring in other body compartments.
Resumo:
The tuberculostatic drug rifampicin has been described as a scavenger of reactive species. Additionally, the recent demonstration that oral therapy with a complex of rifampicin and horseradish peroxidase (HRP) was more effective than rifampicin alone, in an animal model of experimental leprosy, suggested the importance of redox reactions involving rifampicin and their relevance to the mechanism of action. Hence, we studied the oxidation of rifampicin catalyzed by HRP, since this enzyme may represent the prototype of peroxidation-mediated reactions. We found that the antibiotic is efficiently oxidized and that rifampicin-quinone is the product, in a reaction dependent on both HRP and hydrogen peroxide. The steady-state kinetic constants Km app (101±23 mmol/l), Vmax app (0.78±0.09 μmol/l·s-1) and kcat (5.1±0.6 s-1) were measured (n=4). The reaction rate was increased by the addition of co-substrates such as tetramethylbenzidine, salicylic acid, 5-aminosalicylic acid and paracetamol. This effect was explained by invoking an electron-transfer mechanism by which these drugs acted as mediators of rifampicin oxidation. We suggested that this drug interaction might be important at the inflammatory site. © 2005 Pharmaceutical Society of Japan.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There is a growing body of evidence that melatonin and its oxidation product, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5, 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin, a dimer of 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. On the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle. © 2007 The Authors.