989 resultados para peripheral nerve block
                                
Resumo:
Objective  To develop an ultrasound-guided technique for retrobulbar nerve block in horses, and to compare the distribution of three different volumes of injected contrast medium (CM) (4, 8 and 12 mL), with the hypothesis that successful placement of the needle within the retractor bulbi muscle cone would lead to the most effective dispersal of CM towards the nerves leaving the orbital fissure. Study design  Prospective experimental cadaver study. Animals  Twenty equine cadavers. Methods  Ultrasound-guided retrobulbar injections were performed in 40 cadaver orbits. Ultrasound visualization of needle placement within the retractor bulbi muscle cone and spread of injected CM towards the orbital fissure were scored. Needle position and destination of CM were then assessed using computerized tomography (CT), and comparisons performed between ultrasonographic visualization of orbital structures and success rate of injections (intraconal needle placement, CM reaching the orbital fissure). Results  Higher scores for ultrasound visualization resulted in a higher success rate for intraconal CM injection, as documented on the CT images. Successful intraconal placement of the needle (22/34 orbits) resulted in CM always reaching the orbital fissure. CM also reached the orbital fissure in six orbits where needle placement was extraconal. With 4, 8 and 12 mL CM, the orbital fissure was reached in 16/34, 23/34 and 28/34 injections, respectively. Conclusion and clinical relevance  The present study demonstrates the use of ultrasound for visualization of anatomical structures and needle placement during retrobulbar injections in equine orbits. However, this approach needs to be repeated in controlled clinical trials to assess practicability and effectiveness in clinical practice.
                                
Resumo:
REASONS FOR PERFORMING STUDY: Evidence-based information is limited on distribution of local anaesthetic solution following perineural analgesia of the palmar (Pa) and palmar metacarpal (PaM) nerves in the distal aspect of the metacarpal (Mc) region ('low 4-point nerve block'). OBJECTIVES: To demonstrate the potential distribution of local anaesthetic solution after a low 4-point nerve block using a radiographic contrast model. METHODS: A radiodense contrast medium was injected subcutaneously over the medial or the lateral Pa nerve at the junction of the proximal three-quarters and distal quarter of the Mc region (Pa injection) and over the ipsilateral PaM nerve immediately distal to the distal aspect of the second or fourth Mc bones (PaM injection) in both forelimbs of 10 mature horses free from lameness. Radiographs were obtained 0, 10 and 20 min after injection and analysed subjectively and objectively. Methylene blue and a radiodense contrast medium were injected in 20 cadaver limbs using the same techniques. Radiographs were obtained and the limbs dissected. RESULTS: After 31/40 (77.5%) Pa injections, the pattern of the contrast medium suggested distribution in the neurovascular bundle. There was significant proximal diffusion with time, but the main contrast medium patch never progressed proximal to the mid-Mc region. The radiological appearance of 2 limbs suggested that contrast medium was present in the digital flexor tendon sheath (DFTS). After PaM injections, the contrast medium was distributed diffusely around the injection site in the majority of the limbs. In cadaver limbs, after Pa injections, the contrast medium and the dye were distributed in the neurovascular bundle in 8/20 (40%) limbs and in the DFTS in 6/20 (30%) of limbs. After PaM injections, the contrast and dye were distributed diffusely around the injection site in 9/20 (45%) limbs and showed diffuse and tubular distribution in 11/20 (55%) limbs. CONCLUSIONS AND POTENTIAL RELEVANCE: Proximal diffusion of local anaesthetic solution after a low 4-point nerve block is unlikely to be responsible for decreasing lameness caused by pain in the proximal Mc region. The DFTS may be penetrated inadvertently when performing a low 4-point nerve block.
                                
                                
Resumo:
Recently, our study group demonstrated the usefulness of ultrasonographic guidance in ilioinguinal/iliohypogastric nerve blocks in children. As a consequence, we designed a follow-up study to evaluate the optimal volume of local anesthetic for this regional anesthetic technique. Using a modified step-up-step-down approach, with 10 children in each study group, a starting dose of 0.2 mL/kg of 0.25% levobupivacaine was administered to perform an ilioinguinal/iliohypogastric nerve block under ultrasonographic guidance. After each group of 10 patients, the results were analyzed, and if all blocks were successful, the volume of local anesthetic was decreased by 50%, and a further 10 patients were enrolled into the study. Failure to achieve a 100% success rate within a group subjected patients to an automatic increase of half the previous volume reduction to be used in the subsequent group. Using 0.2 and 0.1 mL/kg of 0.25% levobupivacaine, the success rate was 100%. With a volume of 0.05 mL/kg of 0.25% levobupivacaine, 4 of 10 children received additional analgesia because of an inadequate block. Therefore, according to the protocol, the amount was increased to 0.075 mL/kg of 0.25% levobupivacaine, where the success rate was again 100%. We conclude that ultrasonographic guidance for ilioinguinal/iliohypogastric nerve blocks in children allowed a reduction of the volume of local anesthetic to 0.075 mL/kg.
                                
Resumo:
The purpose of this study was to evaluate the effect of continuously released BDNF on peripheral nerve regeneration in a rat model. Initial in vitro evaluation of calcium alginate prolonged-release-capsules (PRC) proved a consistent release of BDNF for a minimum of 8 weeks. In vivo, a worst case scenario was created by surgical removal of a 20-mm section of the sciatic nerve of the rat. Twenty-four autologous fascia tubes were filled with calcium alginate spheres and sutured to the epineurium of both nerve ends. The animals were divided into 3 groups. In group 1, the fascial tube contained plain calcium alginate spheres. In groups 2 and 3, the fascial tube contained calcium alginate spheres with BDNF alone or BDNF stabilized with bovine serum albumin, respectively. The autocannibalization of the operated extremity was clinically assessed and documented in 12 additional rats. The regeneration was evaluated histologically at 4 weeks and 10 weeks in a blinded manner. The length of nerve fibers and the numbers of axons formed in the tube was measured. Over a 10-week period, axons have grown significantly faster in groups 2 and 3 with continuously released BDNF compared to the control. The rats treated with BDNF (groups 2 and 3) demonstrated significantly less autocannibalization than the control group (group 1). These results suggest that BDNF may not only stimulate faster peripheral nerve regeneration provided there is an ideal, biodegradable continuous delivery system but that it significantly reduces the neuropathic pain in the rat model.
                                
Resumo:
A number of different neurorehabilitation strategies include manipulation of the somatosensory system, e.g. in the form of training by passive movement. Recently, peripheral electrical nerve stimulation has been proposed as a simple, painless method of enhancing rehabilitation of motor deficits. Several physiological studies both in animals and in humans indicate that a prolonged period of patterned peripheral electrical stimulation induces short-term plasticity at multiple levels of the motor system. Small-scale studies in humans indicate that these plastic changes are linked with improvement in motor function, particularly in patients with chronic motor deficits after stroke. Somatosensory-mediated disinhibition of motor pathways is a possible underlying mechanism and might explain why peripheral electrical stimulation is more effective when combined with active training. Further large-scale studies are needed to identify the optimal stimulation protocol and the patient groups that stand to benefit the most from this technique.
                                
Resumo:
An 8-year-old crossbred dog was presented with a one-month history of progressive weakness, respiratory impairment and abdominal distension. Surgical exploration revealed the presence of a splenic mass that infiltrated the mesentery and was adherent to the stomach and pancreas. The mass was composed of highly cellular areas of spindle-shaped cells arranged in interlacing bundles, streams, whorls and storiform patterns (Antoni A pattern) and less cellular areas with more loosely arranged spindle to oval cells (Antoni B pattern). The majority of neoplastic cells expressed vimentin, S-100 and glial fibrillary acidic protein (GFAP), but did not express desmin, alpha-smooth muscle actin or factor VIII. These morphological and immunohistochemical findings characterized the lesion as a malignant peripheral nerve sheath tumour (PNST). Primary splenic PNST has not been documented previously in the dog.
                                
Resumo:
The objective of this study was to evaluate the clinical usefulness, in terms of analgesic efficacy and safety, of ultrasound-guided pudendal nerve block performed with bupivacaine in cats undergoing perineal urethrostomy. Eighteen client-owned male cats scheduled for perineal urethrostomy were enrolled in the study and assigned to one of two treatment groups. The pudendal nerve block was performed under general anaesthesia as described elsewhere, with 0.3 ml/kg of either saline (group C) or 0.5% bupivacaine (group B) - the total injection volume being split equally on the two sites of injection (left and right). Intra-operatively, assessment of nociception was based on the rescue analgesics requirement, as well as on the evaluation of changes in physiological parameters in comparison with the baseline values. Post-operative pain assessment was performed using three different pain scales at recovery and then 1, 2 and 3 h after recovery. Cats in group B showed lower heart rates and required fewer analgesics during surgery than group C. Post-operatively, group B had lower pain scores and needed less rescue buprenorphine than group C. Iatrogenic block-related complications were not observed. In conclusion, the ultrasound-guided pudendal nerve block can be considered clinically useful in feline medicine as it provides reliable analgesia in cats undergoing perineal urethrostomy.
                                
Resumo:
Abnormal expression of heat shock proteins (HSPs) has been observed in many human neoplasms and such expression has prognostic, predictive and therapeutic implications. The aim of this study was to evaluate immunohistochemically the expression of HSP 27, HSP 32 and HSP 90 in normal canine peripheral nerves and in four benign and 15 malignant canine peripheral nerve sheath tumours (PNSTs). In normal nerve, all of the HSPs were detected in axons, epineurial fibroblasts and scattered Schwann cell bodies. Cytoplasmic expression of HSP 27 was more widespread and intense in benign PNSTs compared with malignant PNSTs (P <0.05). Widespread and intense nuclear expression of HSP 32 was also associated with benign tumours (P <0.01), while high HSP 90 immunoreactivity was detected in all tumours, suggesting that HSP 90 might represent a new therapeutic target.
                                
Resumo:
The objective of this prospective experimental cadaveric study was to develop an ultrasound-guided technique to perform an anaesthetic pudendal nerve block in male cats. Fifteen fresh cadavers were used for this trial. A detailed anatomical dissection was performed on one cat in order to scrutinise the pudendal nerve and its ramifications. In a second step, the cadavers of six cats were used to test three different ultrasonographic approaches to the pudendal nerve: the deep dorso-lateral, the superficial dorso-lateral and the median transperineal. Although none of the approaches allowed direct ultrasonographical identification of the pudendal nerve branches, the deep dorso-lateral was found to be the most advantageous one in terms of practicability and ability to identify useful and reliable landmarks. Based on these findings, the deep dorso-lateral approach was selected as technique of choice for tracer injections (0.1 ml 1% methylene blue injected bilaterally) in six cat cadavers distinct from those used for the ultrasonographical study. Anatomical dissection revealed a homogeneous spread of the tracer around the pudendal nerve sensory branches in all six cadavers. Finally, computed tomography was performed in two additional cadavers after injection of 0.3 ml/kg (0.15 ml/kg per each injection sites, left and right) contrast medium through the deep dorso-lateral approach in order to obtain a model of volume distribution applicable to local anaesthetics. Our findings in cat cadavers indicate that ultrasound-guided pudendal nerve block is feasible and could be proposed to provide peri-operative analgesia in clinical patients undergoing perineal urethrostomy.
                                
Resumo:
Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.
                                
Resumo:
OBJECTIVE To describe the nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis. STUDY DESIGN Prospective clinical trial. ANIMALS Five captive raptors (Falco peregrinus) aged 6.7 ± 1.3 years. METHODS Anaesthesia was induced and maintained with isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine (0.05 mL kg(-1) per nerve) as the sole intra-operative analgesic treatment. Intraoperative physiological variables were recorded every 10 minutes from endotracheal intubation until the end of anaesthesia. Assessment of intraoperative nociception was based on changes in physiological variables above baseline values, while evaluation of postoperative pain relied on species-specific behavioural indicators. RESULTS The sciatic-femoral nerve block was feasible in raptors and the motor responses following electrical stimulation of both nerves were consistent with those reported in mammalian species. During surgery no rescue analgesia was required. The anaesthesia plane was stable and cardiorespiratory variables did not increase significantly in response to surgical stimulation. Iatrogenic complications, namely nerve damage and local anaesthetic toxicity, did not occur. Recovery was smooth and uneventful. The duration (mean ± SD) of the analgesic effect provided by the nerve block was 130 ± 20 minutes. CONCLUSION AND CLINICAL RELEVANCE The sciatic-femoral nerve block as described in dogs and rabbits can be performed in raptors as well. Further clinical trials with a control groups are required to better investigate the analgesic efficacy and the safety of this technique in raptors.
                                
Resumo:
We have studied the in vivo signaling mechanisms involved in nociceptin/orphanin FQ (Noci)-induced pain responses by using a flexor-reflex paradigm. Noci was 10,000 times more potent than substance P (SP) in eliciting flexor responses after intraplantar injection into the hind limb of mice, but the action of Noci seems to be mediated by SP. Mice pretreated with an NK1 tachykinin receptor antagonist or capsaicin, or mice with a targeted disruption of the tachykinin 1 gene no longer respond to Noci. The action of Noci appears to be mediated by the Noci receptor, a pertussis toxin-sensitive G protein–coupled receptor that stimulates inositol trisphosphate receptor and Ca2+ influx. These findings suggest that Noci indirectly stimulates nerve endings of nociceptive primary afferent neurons through a local SP release.
                                
Resumo:
Defects of the peripheral nervous system are extremely frequent in trauma and surgeries and have high socioeconomic costs. In case of peripheral nerve injury, the first approach is primary neurorrhaphy, which is direct nerve repair with epineural microsutures of the two stumps. However, this is not feasible in case of stump retraction or in case of tissue loss (gap > 2 cm), where the main surgical options are autologous grafts, allogenic grafts, or nerve conduits. While the gold standard is the autograft, it has disadvantages related to its harvesting, with an inevitable donor site morbidity and functional deficit. Fresh nerve allografts have therefore become a viable alternative option, but they require immunosuppression, which is often contraindicated. Acellular Nerve Allografts (ANA) represent a valid alternative, they do not need immunosuppression and appear to be safe and effective based on recent studies. The purpose of this study is to propose and develop an innovative method of nerve decellularization (Rizzoli method), conforming to cleanroom requirements in order to perform the direct tissue manipulation step and the nerve decellularization process within five hours, so as to accelerate the detachment of myelin and cellular debris, without detrimental effects on nerve architecture. In this study, the safety and the efficacy of the new method are evaluated in vitro and in vivo by histological, immunohistochemical, and histomorphometric studies in rabbits and humans. The new method is rapid, safe, and cheaper if compared with available commercial ANAs. The present study shows that the method, previously optimized in vitro and in vivo on animal model presented by our group, can be applied on human nerve samples. This work represents the first step in providing a novel, safe, and inexpensive tool for use by European tissue banks to democratize the use of nerve tissue transplantation for nerve injury reconstruction.
                                
Resumo:
Introduction & Objectifs : Pour assurer l’analgésie postopératoire, l’anesthésiste dispose, en plus des différentes classes de médicaments administrés par voie orale ou intraveineuse, de diverses techniques pour bloquer l’influx nerveux douloureux en administrant les anesthésiques locaux (AL) de manière centrale ou périphérique. La ropivacaïne (ROP), un AL à longue durée d’action, est un médicament de première intention partout dans le monde, en raison de sa grande efficacité et de son faible risque de toxicité. Contrairement à certains pays, la ROP n'est toujours pas indiquée au Canada pour la rachianesthésie (bloc central) en raison d'un manque de données probantes. Jusqu'à présent, les efforts de recherche ont essentiellement porté sur la sécurité ainsi que sur la durée d’action du médicament lorsqu’administré par voie spinale. De plus, les doses optimales de ROP pour l’anesthésie régionale périphérique ne sont pas encore précisément connues. La posologie devrait être adaptée au site d’administration ainsi qu’à l’intensité et la durée du stimulus produit par la chirurgie. Ultimement, cela permettrait aux cliniciens d’identifier le régime optimal en fonction des facteurs démographiques qui pourraient affecter la pharmacocinétique (PK) et la pharmacodynamie (PD) de l’AL (objectif global de ces travaux). Validation de la Méthode Analytique Manuscrit 1 : Une méthode analytique spécifique et sensible permettant de déterminer les concentrations plasmatiques de ROP a d’abord été optimisée et validée. Validation du Biomarqueur Manuscrit 2 : Nous avons ensuite mis au point et évalué la fiabilité d’une méthode quantitative basée sur la mesure du seuil de perception sensorielle (CPT) chez le volontaire sain. Ce test nécessite l’application d’un courant électrique transcutané qui augmente graduellement et qui, selon la fréquence choisie, est capable de stimuler spécifiquement les fibres nerveuses impliquées dans le cheminement de l’influx nerveux douloureux. Les résultats obtenus chez les volontaires sains indiquent que la mesure CPT est fiable, reproductible et permet de suivre l’évolution temporelle du bloc sensitif. Études cliniques Manuscrit 3 : Nous avons ensuite caractérisé, pendant plus de 72 h, l’absorption systémique de la ROP lorsqu’administrée pour un bloc du nerf fémoral chez 19 patients subissant une chirurgie du genou. Le modèle PK populationnel utilisé pour analyser nos résultats comporte une absorption biphasique durant laquelle une fraction de la dose administrée pénètre rapidement (temps d’absorption moyen : 27 min, IC % 19 – 38 min) dans le flux sanguin systémique pendant que l’autre partie, en provenance du site de dépôt, est redistribuée beaucoup plus lentement (demi-vie (T1/2) : 2.6 h, IC % 1.6 – 4.3 h) vers la circulation systémique. Une relation statistiquement significative entre l’âge de nos patients et la redistribution de l’AL suggère que la perméabilité tissulaire est augmentée avec l’âge. Manuscrit 4 : Une analyse PK-PD du comportement sensitif du bloc fémoral (CPT) a été effectuée. Le modèle développé a estimé à 20.2 ± 10.1 mg la quantité de ROP nécessaire au site d’action pour produire 90 % de l’effet maximal (AE90). À 2 X la AE90, le modèle prédit un début d’action de 23.4 ± 12.5 min et une durée de 22.9 ± 5.3 h. Il s’agit de la première étude ayant caractérisé le comportement sensitif d’un bloc nerveux périphérique. Manuscrit 5 : La troisième et dernière étude clinique a été conduite chez les patients qui devaient subir une chirurgie du genou sous rachianesthésie. Tout comme pour le bloc du nerf fémoral, le modèle PK le plus approprié pour nos données suggère que l’absorption systémique de la ROP à partir du liquide céphalo-rachidien est biphasique; c.à .d. une phase initiale (T1/2 : 49 min, IC %: 24 – 77 min) suivie (délai: 18 ± 2 min) d'une phase légèrement plus lente (T1/2 : 66 min, IC %: 36 – 97 min). L’effet maximal a été observé beaucoup plus rapidement, soit aux environs de 12.6 ± 4.9 min, avant de revenir aux valeurs de base 210 ± 55 min suivant l’administration de l’agent. Ces données ont permis d’estimer une AE50 de 7.3 ± 2.3 mg pour l'administration spinale. Conclusion : En somme, ces modèles peuvent être utilisés pour prédire l’évolution temporelle du bloc sensitif de l’anesthésie rachidienne et périphérique (fémorale), et par conséquent, optimiser l’utilisation clinique de la ROP en fonction des besoins des cliniciens, notamment en ce qui a trait à l’âge du patient.
 
                    