988 resultados para periaqueductal gray matter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton T1 relaxation times of metabolites in the human brain have not previously been published at 7 T. In this study, T1 values of CH3 and CH2 group of N-acetylaspartate and total creatine as well as nine other brain metabolites were measured in occipital white matter and gray matter at 7 T using an inversion-recovery technique combined with a newly implemented semi-adiabatic spin-echo full-intensity acquired localized spectroscopy sequence (echo time = 12 ms). The mean T1 values of metabolites in occipital white matter and gray matter ranged from 0.9 to 2.2 s. Among them, the T1 of glutathione, scyllo-inositol, taurine, phosphorylethanolamine, and N-acetylaspartylglutamate were determined for the first time in the human brain. Significant differences in T1 between white matter and gray matter were found for water (-28%), total choline (-14%), N-acetylaspartylglutamate (-29%), N-acetylaspartate (+4%), and glutamate (+8%). An increasing trend in T1 was observed when compared with previously reported values of N-acetylaspartate (CH3 ), total creatine (CH3 ), and total choline at 3 T. However, for N-acetylaspartate (CH3 ), total creatine, and total choline, no substantial differences compared to previously reported values at 9.4 T were discernible. The T1 values reported here will be useful for the quantification of metabolites and signal-to-noise optimization in human brain at 7 T. Magn Reson Med 69:931-936, 2013. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To identify biological evidence for Alzheimer disease (AD) in individuals with subjective memory impairment (SMI) and unimpaired cognitive performance and to investigate the longitudinal cognitive course in these subjects. METHOD: [¹⁸F]fluoro-2-deoxyglucose PET (FDG-PET) and structural MRI were acquired in 31 subjects with SMI and 56 controls. Cognitive follow-up testing was performed (average follow-up time: 35 months). Differences in baseline brain imaging data and in memory decline were assessed between both groups. Associations of memory decline with brain imaging data were tested. RESULTS: The SMI group showed hypometabolism in the right precuneus and hypermetabolism in the right medial temporal lobe. Gray matter volume was reduced in the right hippocampus in the SMI group. At follow-up, subjects with SMI showed a poorer performance than controls on measures of episodic memory. Longitudinal memory decline in the SMI group was associated with reduced glucose metabolism in the right precuneus at baseline. CONCLUSION: The cross-sectional difference in 2 independent neuroimaging modalities indicates early AD pathology in SMI. The poorer memory performance at follow-up and the association of reduced longitudinal memory performance with hypometabolism in the precuneus at baseline support the concept of SMI as the earliest manifestation of AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavioral effects of trans-(±)-1-amino-1,3-cyclopentanedicarboxylic acid (t-ACPD), a metabotropic glutamate receptor (mGluR) agonist, or 0.9% (w/v) saline, injected into the dorsal periaqueductal gray (DPAG), was investigated. Male Wistar rats showed defense reactions characterized by jumps toward the top edges of the cages (saline = 0 vs t-ACPD = 6.0, medians P<0.05) and gallops (saline = 0 vs t-ACPD = 10.0, medians P<0.05) during the 60-s period after the beginning of the injection. In another experiment animals were placed inside an open arena for 5 min immediately after injection. Their behavior was recorded by a video camera and a computer program analyzed the videotapes. Eleven of fifteen rats injected with t-ACPD showed a short-lasting (about 1 min) flight reaction. No saline-treated animal showed this reaction (P<0.0005, chi-square test). The drug induced an increase in turning behavior (P = 0.002, MANOVA) and a decrease in the number of rearings (P<0.001, MANOVA) and grooming episodes (P<0.001, MANOVA). These results suggest that mGluRs play a role in the control of defense reactions in the DPAG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The periaqueductal gray (PAG) has been traditionally considered to be an exit relay for defensive responses. Functional mapping of its subdivisions has advanced our knowledge of this structure, but synthesis remains difficult mainly because results from lesion and stimulation studies have not correlated perfectly. After using a strategy that combined both techniques and a reevaluation of the available literature on PAG function and connections, we propose here that freezing could be mediated by different PAG subdivisions depending on the presence of immediate danger or exposure to related signaling cues. These subdivisions are separate functional entities with distinct descending and ascending connections that are likely to play a role in different defensive responses. The existence of ascending connections also suggests that the PAG is not simply a final common path for defensive responses. For example, the possibility that indirect ascending connections to the cingulate cortex could play a role in the expression of freezing evoked by activation of the neural substrate of fear in the dorsal PAG has been considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that morphine inhibits maternal behaviors. Previous studies by our group have shown activation of the rostrolateral periaqueductal gray (rlPAG) upon inhibition-intended subcutaneous injections of morphine. In this context, we demonstrated that a single naloxone infusion into the rlPAG, following this opioid-induced inhibition, reactivated maternal behaviors. Since these data were obtained by using peripheral morphine injections, the present study was designed to test whether morphine injected directly into the rlPAG would affect maternal behaviors. Our hypothesis that morphine acting through the rlPAG would disrupt maternal behaviors was confirmed with a local infusion of morphine. The mothers showed shorter latency for locomotor behavior to explore the home cage (P = 0.049). Inhibition was especially evident regarding retrieving (P = 0.002), nest building (P = 0.05) and full maternal behavior (P = 0.023). These results support the view that opioidergic transmission plays a behaviorally meaningful inhibitory role in the rostrolateral PAG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO) and endocannabinoids (eCBs) play an important role in the regulation of aversive responses in the periaqueductal gray (PAG). Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1) receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1) receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In nonhuman species, testosterone is known to have permanent organizing effects early in life that predict later expression of sex differences in brain and behavior. However, in humans, it is still unknown whether such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male > Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a long-standing gap between human and nonhuman species by showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals faced with conflicting cues, such as predatory threat and a given rewarding stimulus, must make rapid decisions to engage in defensive versus other appetitive behaviors. The brain mechanisms mediating such responses are poorly understood. However, the periaqueductal gray (PAG) seems particularly suitable for accomplishing this task. The PAG is thought to have, at least, two distinct general roles on the organization of motivated responses, i.e., one on the execution of defensive and reproductive behaviors, and the other on the motivational drive underlying adaptive responses. We have presently examined how the PAG would be involved in mediating the behavioral choice between mutually incompatible behaviors, such as reproduction or defense, when dams are exposed to pups and cat odor. First, we established the behavioral protocol and observed that lactating rats, simultaneously exposed to pups and cat odor, inhibited maternal behavior and expressed clear defensive responses. We have further revealed that cat odor exposure up-regulated Fos expression in the dorsal PAG, and that NMDA cytotoxic lesions therein were able to restore maternal responses, and, at the same time, block defensive responsiveness to cat odor. Potential paths mediating the dorsal PAG influences on the inhibition of appetitive (i.e., retrieving behavior) and consummatory (i.e., nursing) maternal responses are discussed. Overall, we were able to confirm the dual role of the PAG, where, in the present case, the dorsal PAG, apart from organizing defensive responses, also appears to account for the behavioral inhibition of non-defensive responses. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate NMDA receptor activation within the periaqueductal gray (PAG) leads to antinociceptive, autonomic and behavioral responses characterized as the fear reaction. Considering that NMDA receptor triggers activation of neuronal nitric oxide synthase (nNOS), enzyme that produces nitric oxide (NO), this study investigated the effects of intra-PAG infusions of NPLA (N omega-propyl-L-arginine), an nNOS inhibitor, on behavioral and antinociceptive responses induced by local injection of NMDA receptor agonist in mice. The behaviors measured were frequency of jumping and rearing as well as duration (in seconds) of running and freezing. Nociception was assessed during the second phase of the formalin test (injection of 50 mu l of formalin 2.5% into the dorsal surface of the right hind paw). Five to seven days after stereotaxic surgery for intracerebral cannula implantation, mice were injected with formalin into the paw, and 10 min later, they received intra-dPAG injection of NPLA (0, 0.2, or 0.4 nmol/0.1 mu l). Ten minutes later, they were injected with NMDA (N-methyl-D-aspartate: 0 or 0.04 nmol/0.1 mu l) into the same midbrain site and were immediately placed in glass holding cage for recording the defensive behavior and the time spent on licking the injected paw with formalin during a period of 10 min. Microinjections of NMDA significantly decreased nociception response and produced jumping, running, and freezing reactions. Intra-dPAG injections of NPLA (0.4 nmol) completely blocked the NMDA effects without affecting either behavioral or nociceptive responses in intra-dPAG saline-injected animals, except for the rearing frequency that was increased by the nNOS inhibitor. These results strongly suggest the involvement of NO within the PAG in the antinociceptive and defensive reactions induced by local glutamate NMDA receptor activation in this midbrain structure. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the relationship between behaviors elicited by chemical stimulation of the dorsal periaqueductal gray (dorsal PAG) and spontaneous defensive behaviors to a predator, the excitatory amino acid D,L-homocysteic acid (5 nmol in 0.1 mu l), was infused into the dorsal PAG and behavioral responses of mice were evaluated in two different situations, a rectangular novel chamber or the Mouse Defense Test Battery (MDTB) apparatus. During a 1-min period following drug infusion, more jumps were made in the chamber than in the MDTB runway but running time and distance traveled were significantly higher in the runway. Animals were subsequently tested using the standard MDTB procedure (anti-predator avoidance, chase and defensive threat/attack). No drug effects on these measures were significant. In a further test in the MDTB apparatus, the pathway of the mouse during peak locomotion response was blocked 3 times by the predator stimulus (anesthetized rat) to determine if the mouse would avoid contact. Ninety percent of D,L-homocysteic treated animals made direct contact with the stimulus (rat), indicating that D,L-homocysteic-induced running is not guided by relevant (here, threat) stimuli. These results indicate that running as opposed to jumping is the primary response in mice injected with D,L-homocysteic into the dorsal PAG when the environment enables flight. However, the lack of responsivity to the predator during peak locomotion suggests that D,L-homocysteic-stimulation into the dorsal PAG does not induce normal antipredator flight. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate-NMDA (N-methyl-D-aspartate) receptor activation within the periaqueductal gray (PAG) leads to antinociceptive, autonomic and behavioral responses characterized as the fear reaction. We have recently demonstrated that the vigorous defensive-like behaviors (e.g. jumping and running) and antinociception induced by intra-PAG injection of N-methyl-D-aspartate (NMDA) were completely blocked by prior infusion of N(omega)-propyl-L-arginine (NPLA), a specific neuronal nitric oxide synthesis (nNOS) enzyme inhibitor, into the same midbrain structure. It remains unclear however, whether the inhibition of nNOS within the mouse PAG changes the anxiety-like behavior per se or the effects of the inhibition of nNOS depend on the suppression of downstream of glutamate-NMDA receptor activation. This study investigated whether intra-PAG infusion of NPLA (i) attenuates anxiety in the elevated plus-maze (EPM) and (ii) antagonizes the anxiogenic-like effects induced by intra-PAG injection of NMDA. Test sessions were videotaped and subsequently scored for conventional indices of anxiety (percentage of open arm entries and percentage of open arm time) and locomotor activity (closed arm entries). Results showed that intra-PAG infusions of NPLA (0.2, 0.4 or 0.8 nmol/0.1 mu l) did not alter significantly any behavioral response in the EPM when compared to control group (Experiment 1). Intra-PAG infusion of NMDA (0 and 0.02 nmol/0.1 mu l; a dose that does not provoke vigorous defensive behaviors per se in mice) significantly reduced open arm exploration, confirming an anxiogenic-like effect (Experiment 2). When injected into the PAG 10 min prior local NMDA injection (0.02 nmol/0.1 mu l), NPLA (0.4 nmol/0.1 mu l) was able to revert the anxiogenic-like effect of glutamate-NMDA receptor activation. Neither intra-PAG infusion of NMDA nor NPLA altered closed arm entries, a widely used measure of locomotor activity in the EPM. These results suggest that intra-PAG nitric oxide synthesis does not play a role on anxiety-like behavior elicited during EPM exposure; however its synthesis is important for the proaversive effects produced by activation of glutamate-NMDA receptors located within this limbic midbrain structure. (C) 2008 Elsevier B.V. All rights reserved.