909 resultados para passive daylighting collectors
Resumo:
Three types of conventional solar air heater are designed such that their heat absorbing areas and the pressure drops across them are equal for equal air mass flow rates per unit collector area. The results of thermal performance tests conducted simultaneously on these collectors, under the same environmental conditions, are presented.
Resumo:
We consider the problem of tracking an intruder in a plane region by using a wireless sensor network comprising motes equipped with passive infrared (PIR) sensors deployed over the region. An input-output model for the PIR sensor and a method to estimate the angular speed of the target from the sensor output are proposed. With the measurement model so obtained, we study the centralized and decentralized tracking performance using the extended Kalman filter.
Resumo:
Using a combination of a logarithmic spiral and a straight line as a failure surface, comprehensive charts have been developed to determine the passive earth pressure coefficients and the positions of the critical failure surface for positive as well as negative wall friction angles. Translational movement of the wall has been examined in detail, considering the soil as either an associated flow dilatant material or a non-dilatant material, to determine the kinematic admissibility of the limit equilibrium solutions.
Resumo:
We describe simple one-dimensional models of passive (no energy input, no control), generally dissipative, vertical hopping and one-ball juggling. The central observation is that internal passive system motions can conspire to eliminate collisions in these systems. For hopping, two point masses are connected by a spring and the lower mass has inelastic collisions with the ground. For juggling, a lower point-mass hand is connected by a spring to the ground and an upper point-mass ball is caught with an inelastic collision and then re-thrown into gravitational free flight. The two systems have identical dynamics. Despite inelastic collisions between non-zero masses, these systems have special symmetric energy-conserving periodic motions where the collision is at zero relative velocity. Additionally, these special periodic motions have a non-zero sized, one-sided region of attraction on the higher-energy side. For either very large or very small mass ratios, the one-sided region of attraction is large. These results persist for mildly non-linear springs and non-constant gravity. Although non-collisional damping destroys the periodic motions, small energy injection makes the periodic motions stable, with a two-sided region of attraction. The existence of such special energy conserving solutions for hopping and juggling points to possibly useful strategies for both animals and robots. The lossless motions are demonstrated with a table-top experiment.
Resumo:
The method of characteristics was used to generate passive earth pressure coefficients for an inclined wall retaining cohesionless backfill material in the presence of pseudostatic horizontal earthquake body forces. The variation of the passive earth pressure coefficients K-pq and K-pgamma with changes in horizontal earthquake acceleration coefficient due to the components of soil unit weight and surcharge pressure, respectively, has been obtained; a closed-form solution for K-pq is also provided. The passive earth resistance has been found to decrease sharply with an increase in the magnitude of horizontal earthquake acceleration. The computed passive earth pressure coefficients were found to be the lowest when compared to all of the previous solutions available in the literature.
Resumo:
: In the presence of pseudo-static seismic forces, passive earth pressure coefficients behind retaining walls were generated using the limit equilibrium method of analysis for the negative wall friction angle case (i.e., the wall moves upwards relative to the backfill) with logarithmic spirals as rupture surfaces. Individual density, surcharge, and cohesion components were computed to obtain the total minimum seismic passive resistance in soils by adding together the individual minimum components. The effect of variation in wall batter angle, ground slope, wall friction angle, soil friction angle, and horizontal and vertical seismic accelerations on seismic passive earth pressures are considered in the analysis. The seismic passive earth pressure coefficients are found to be highly sensitive to the seismic acceleration coefficients both in the horizontal and the vertical directions. The results are presented in graphical and tabular formats.
Resumo:
A passive vertical hopping robot is here highly idealised as two vertically arranged masses acted on by gravity and coupled by a linear spring. The lower mass makes dead (e = 0) collisions with the rigid ground. The equations of motion can be reduced to a one dimensional map. Fixed points of the map are found in which case the robot hops incessantly. For these conservative solutions the lower mass collides with the ground with zero impact velocity. The interval of attraction for these conservative fixed points depends on system parameters.
Resumo:
Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Resumo:
An attempt has been made to use the indigeneous oils-Bombax Malabarica oil and Shark liver oil in the form of sodium soaps as collectors in the flotation of quartz using barium chloride as activator. The effect of pH, collector concentration and activator concentration on the flotation of quartz is studied in a Leaf and knoll flotation cell. The experiments show that it is possible to obtain 98.0 per cent of quartz as float using 10 mg. of Bombax. Malabarica oil and Shark liver oil soaps at pH values of more than 7.0 and when barium ion concentration is in excess of that required to form barium soaps. Bombax Malabarica oil is found to be superior to Shark liver oil as collector in the flotation of quartz.
Resumo:
Grid-connected inverters require a third-order LCL filter to meet standards such as the IEEE Std. 519-1992 while being compact and cost-effective. LCL filter introduces resonance, which needs to be damped through active or passive methods. Passive damping schemes have less control complexity and are more reliable. This study explores the split-capacitor resistive-inductive (SC-RL) passive damping scheme. The SC-RL damped LCL filter is modelled using state space approach. Using this model, the power loss and damping are analysed. Based on the analysis, the SC-RL scheme is shown to have lower losses than other simpler passive damping methods. This makes the SC-RL scheme suitable for high power applications. A method for component selection that minimises the power loss in the damping resistors while keeping the system well damped is proposed. The design selection takes into account the influence of switching frequency, resonance frequency and the choice of inductance and capacitance values of the filter on the damping component selection. The use of normalised parameters makes it suitable for a wide range of design applications. Analytical results show the losses and quality factor to be in the range of 0.05-0.1% and 2.0-2.5, respectively, which are validated experimentally.
Resumo:
A hierarchical model is proposed for the joint moments of the passive scalar dissipation and the velocity dissipation in fluid turbulence. This model predicts that the joint probability density function (PDF) of the dissipations is a bivariate log-Poisson. An analytical calculation of the scaling exponents of structure functions of the passive scalar is carried out for this hierarchical model, showing a good agreement with the results of direct numerical simulations and experiments.