938 resultados para partially oxidizing
Resumo:
An n degree-of-freedom Hamiltonian system with r (1¡r¡n) independent 0rst integrals which are in involution is calledpartially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings andweak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the 0rst-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging methodfor quasi-partially integrable Hamiltonian systems is brie4y reviewed. Then, basedon the averagedIt ˆo equations, a backwardKolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of 0rst-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and 0nal time conditions for the control problems of maximization of reliability andof maximization of mean 0rst-passage time are formulated. The relationship between the backwardKolmogorov equation andthe dynamical programming equation for reliability maximization, andthat between the Pontryagin equation andthe dynamical programming equation for maximization of mean 0rst-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the e9ectiveness of feedback control in reducing 0rst-passage failure.
Resumo:
The short-surface waves generated by a 3-D arbitrarily oscillating body floating onwater are discussed. In the far-field off the body, the phase and the amplitude functions ofthe radiated waves are determined by the ray method. An undetermined constant is includ-ed in the amplitude function. From the result of Ref. [1], the near-field boundary layersolution near the body waterline is obtained. The amplitude of this solution depends on thewhole wall shape of the body and the slope at the body waterline on the cross-sections per-pendicular to the waterline. By matching the far-field solution with the near-field bound-ary layer solution, the undetermined constant in the amplitude function of the far-fieldradiated waves is determined. For the special case of a half-submerged sphere which per-forms vertical oscillating motion, the result obtained in this paper is in agreement withthat of Ref. [ 2 ].
Resumo:
Slip-line field solutions are presented for the ultimate load of submarine pipelines on a purely cohesive soil obeying Tresca yield criterion, taking into account of pipe embedment and pipe-soil contact friction. The derived bearing capacity factors for a smooth pipeline degenerate into those for the traditional strip-line footing when the embedment approaches zero. Parametric studies demonstrate that the bearing capacity factors for pipeline foundations are significantly influenced by the pipeline embedment and the pipe-soil frictional coefficient. With the increase of pipeline embedment, the bearing capacity factor Nc decreases gradually, and finally reaches the minimum value (4.0) when the embedment equals to pipeline radius. As such, if the pipeline is directly treated as a traditional strip footing, the bearing capacity factor Nc would be over evaluated. The ultimate bearing loads increase with increasing pipeline embedment and pipe-soil frictional coefficient.