988 resultados para parallel-machine
Resumo:
Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.
This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.
Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.
It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.
Resumo:
We propose a new formally syntax-based method for statistical machine translation. Transductions between parsing trees are transformed into a problem of sequence tagging, which is then tackled by a search- based structured prediction method. This allows us to automatically acquire transla- tion knowledge from a parallel corpus without the need of complex linguistic parsing. This method can achieve compa- rable results with phrase-based method (like Pharaoh), however, only about ten percent number of translation table is used. Experiments show that the structured pre- diction approach for SMT is promising for its strong ability at combining words.
Resumo:
Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.
Resumo:
The paper considers the single machine due date assignment and scheduling problems with n jobs in which the due dates are to be obtained from the processing times by adding a positive slack q. A schedule is feasible if there are no tardy jobs and the job sequence respects given precedence constraints. The value of q is chosen so as to minimize a function ϕ(F,q) which is non-decreasing in each of its arguments, where F is a certain non-decreasing earliness penalty function. Once q is chosen or fixed, the corresponding scheduling problem is to find a feasible schedule with the minimum value of function F. In the case of arbitrary precedence constraints the problems under consideration are shown to be NP-hard in the strong sense even for F being total earliness. If the precedence constraints are defined by a series-parallel graph, both scheduling and due date assignment problems are proved solvable in time, provided that F is either the sum of linear functions or the sum of exponential functions. The running time of the algorithms can be reduced to if the jobs are independent. Scope and purpose We consider the single machine due date assignment and scheduling problems and design fast algorithms for their solution under a wide range of assumptions. The problems under consideration arise in production planning when the management is faced with a problem of setting the realistic due dates for a number of orders. The due dates of the orders are determined by increasing the time needed for their fulfillment by a common positive slack. If the slack is set to be large enough, the due dates can be easily maintained, thereby producing a good image of the firm. This, however, may result in the substantial holding cost of the finished products before they are brought to the customer. The objective is to explore the trade-off between the size of the slack and the arising holding costs for the early orders.
Resumo:
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is NP-hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst-case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two-machine flow shop and the open shop problems with a single server are also shown to be NP-hard in the strong sense. However, we reduce the two-machine flow shop no-wait problem with a single server to the Gilmore-Gomory traveling salesman problem and solve it in polynomial time. (c) 2000 John Wiley & Sons, Inc.
Resumo:
The Computer Aided Parallelisation Tools (CAPTools) [Ierotheou, C, Johnson SP, Cross M, Leggett PF, Computer aided parallelisation tools (CAPTools)-conceptual overview and performance on the parallelisation of structured mesh codes, Parallel Computing, 1996;22:163±195] is a set of interactive tools aimed to provide automatic parallelisation of serial FORTRAN Computational Mechanics (CM) programs. CAPTools analyses the user's serial code and then through stages of array partitioning, mask and communication calculation, generates parallel SPMD (Single Program Multiple Data) messages passing FORTRAN. The parallel code generated by CAPTools contains calls to a collection of routines that form the CAPTools communications Library (CAPLib). The library provides a portable layer and user friendly abstraction over the underlying parallel environment. CAPLib contains optimised message passing routines for data exchange between parallel processes and other utility routines for parallel execution control, initialisation and debugging. By compiling and linking with different implementations of the library, the user is able to run on many different parallel environments. Even with today's parallel systems the concept of a single version of a parallel application code is more of an aspiration than a reality. However for CM codes the data partitioning SPMD paradigm requires a relatively small set of message-passing communication calls. This set can be implemented as an intermediate `thin layer' library of message-passing calls that enables the parallel code (especially that generated automatically by a parallelisation tool such as CAPTools) to be as generic as possible. CAPLib is just such a `thin layer' message passing library that supports parallel CM codes, by mapping generic calls onto machine specific libraries (such as CRAY SHMEM) and portable general purpose libraries (such as PVM an MPI). This paper describe CAPLib together with its three perceived advantages over other routes: - as a high level abstraction, it is both easy to understand (especially when generated automatically by tools) and to implement by hand, for the CM community (who are not generally parallel computing specialists); - the one parallel version of the application code is truly generic and portable; - the parallel application can readily utilise whatever message passing libraries on a given machine yield optimum performance.
Resumo:
In this paper, we study a problem of scheduling and batching on two machines in a flow-shop and open-shop environment. Each machine processes operations in batches, and the processing time of a batch is the sum of the processing times of the operations in that batch. A setup time, which depends only on the machine, is required before a batch is processed on a machine, and all jobs in a batch remain at the machine until the entire batch is processed. The aim is to make batching and sequencing decisions, which specify a partition of the jobs into batches on each machine, and a processing order of the batches on each machine, respectively, so that the makespan is minimized. The flow-shop problem is shown to be strongly NP-hard. We demonstrate that there is an optimal solution with the same batches on the two machines; we refer to these as consistent batches. A heuristic is developed that selects the best schedule among several with one, two, or three consistent batches, and is shown to have a worst-case performance ratio of 4/3. For the open-shop, we show that the problem is NP-hard in the ordinary sense. By proving the existence of an optimal solution with one, two or three consistent batches, a close relationship is established with the problem of scheduling two or three identical parallel machines to minimize the makespan. This allows a pseudo-polynomial algorithm to be derived, and various heuristic methods to be suggested.
Resumo:
In this paper we study the two-machine flow shop and open shop problems to minimize the makespan with a single interstage transporter that may carry any number of jobs between the machines at a time. For each of these problems we present a best possible approximation algorithm within a class of schedules with at most two shipments. As a by-product of this research, for the problem of minimizing the makespan on parallel identical machines we analyze the ratio of the makespan for a non-preemptive schedule over the makespan of a preemptive schedule.
Resumo:
A simulation program has been developed to calculate the power-spectral density of thin avalanche photodiodes, which are used in optical networks. The program extends the time-domain analysis of the dead-space multiplication model to compute the autocorrelation function of the APD impulse response. However, the computation requires a large amount of memory space and is very time consuming. We describe our experiences in parallelizing the code using both MPI and OpenMP. Several array partitioning schemes and scheduling policies are implemented and tested Our results show that the OpenMP code is scalable up to 64 processors on an SGI Origin 2000 machine and has small average errors.
Resumo:
An important factor for high-speed optical communication is the availability of ultrafast and low-noise photodetectors. Among the semiconductor photodetectors that are commonly used in today’s long-haul and metro-area fiber-optic systems, avalanche photodiodes (APDs) are often preferred over p-i-n photodiodes due to their internal gain, which significantly improves the receiver sensitivity and alleviates the need for optical pre-amplification. Unfortunately, the random nature of the very process of carrier impact ionization, which generates the gain, is inherently noisy and results in fluctuations not only in the gain but also in the time response. Recently, a theory characterizing the autocorrelation function of APDs has been developed by us which incorporates the dead-space effect, an effect that is very significant in thin, high-performance APDs. The research extends the time-domain analysis of the dead-space multiplication model to compute the autocorrelation function of the APD impulse response. However, the computation requires a large amount of memory space and is very time consuming. In this research, we describe our experiences in parallelizing the code in MPI and OpenMP using CAPTools. Several array partitioning schemes and scheduling policies are implemented and tested. Our results show that the code is scalable up to 64 processors on a SGI Origin 2000 machine and has small average errors.
Resumo:
We consider various single machine scheduling problems in which the processing time of a job depends either on its position in a processing sequence or on its start time. We focus on problems of minimizing the makespan or the sum of (weighted) completion times of the jobs. In many situations we show that the objective function is priority-generating, and therefore the corresponding scheduling problem under series-parallel precedence constraints is polynomially solvable. In other situations we provide counter-examples that show that the objective function is not priority-generating.
Resumo:
We consider a problem of scheduling jobs on m parallel machines. The machines are dedicated, i.e., for each job the processing machine is known in advance. We mainly concentrate on the model in which at any time there is one unit of an additional resource. Any job may be assigned the resource and this reduces its processing time. A job that is given the resource uses it at each time of its processing. No two jobs are allowed to use the resource simultaneously. The objective is to minimize the makespan. We prove that the two-machine problem is NP-hard in the ordinary sense, describe a pseudopolynomial dynamic programming algorithm and convert it into an FPTAS. For the problem with an arbitrary number of machines we present an algorithm with a worst-case ratio close to 3/2, and close to 3, if a job can be given several units of the resource. For the problem with a fixed number of machines we give a PTAS. Virtually all algorithms rely on a certain variant of the linear knapsack problem (maximization, minimization, multiple-choice, bicriteria). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008
Resumo:
From perspective of structure synthesis, certain special geometric constraints, such as joint axes intersecting at one point or perpendicular to each other, are necessary in realizing the end-effector motion of kinematically decoupled parallel manipulators (PMs) along individual motion axes. These requirements are difficult to achieve in the actual system due to assembly errors and manufacturing tolerances. Those errors that violate the geometric constraint requirements are termed “constraint errors”. The constraint errors usually are more troublesome than other manipulator errors because the decoupled motion characteristics of the manipulator may no longer exist and the decoupled kinematic models will be rendered useless due to these constraint errors. Therefore, identification and prevention of these constraint errors in initial design and manufacturing stage are of great significance. In this article, three basic types of constraint errors are identified, and an approach to evaluate the effects of constraint errors on decoupling characteristics of PMs is proposed. This approach is illustrated by a 6-DOF PM with decoupled translation and rotation. The results show that the proposed evaluation method is effective to guide design and assembly.