716 resultados para pacs: mathematical computing
Resumo:
We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A multiphase deterministic mathematical model was implemented to predict the formation of the grain macrostructure during unidirectional solidification. The model consists of macroscopic equations of energy, mass, and species conservation coupled with dendritic growth models. A grain nucleation model based on a Gaussian distribution of nucleation undercoolings was also adopted. At some solidification conditions, the cooling curves calculated with the model showed oscillations (""wiggles""), which prevented the correct prediction of the average grain size along the structure. Numerous simulations were carried out at nucleation conditions where the oscillations are absent, enabling an assessment of the effect of the heat transfer coefficient on the average grain size and columnar-to-equiaxed transition.
Resumo:
Thermodynamic relations between the solubility of a protein and the solution pH are presented in this work. The hypotheses behind the development are that the protein chemical potential in liquid phase can be described by Henry`s law and that the solid-liquid equilibrium is established only between neutral molecules. The mathematical development results in an analytical expression of the solubility curve, as a function of the ionization equilibrium constants, the pH and the solubility at the isoelectric point. It is shown that the same equation can be obtained either by directly calculating the fraction of neutral protein molecules or by integrating the curve of the protein average charge. The methodology was successfully applied to the description of the solubility of porcine insulin as a function of pH at three different temperatures and of bovine beta-lactoglobulin at four different ionic strengths. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This essay is a trial on giving some mathematical ideas about the concept of biological complexity, trying to explore four different attributes considered to be essential to characterize a complex system in a biological context: decomposition, heterogeneous assembly, self-organization, and adequacy. It is a theoretical and speculative approach, opening some possibilities to further numerical and experimental work, illustrated by references to several researches that applied the concepts presented here. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A mathematical model was developed to estimate HIV incidence in NSW prisons. Data included: duration of imprisonment; number of inmates using each needle; lower and higher number of shared injections per IDU per week; proportion of IDUs using bleach; efficacy of bleach; HIV prevalence and probability of infection. HIV prevalence in IDUs in prison was estimated to have risen from 0.8 to 5.7% (12.2%) over 180 weeks when using lower (and higher) values for frequency of shared injections. The estimated minimum (and maximum) number of IDU inmates infected with HIV in NSW prisons was 38 (and 152) in 1993 according to the model. These figures require confirmation by seroincidence studies. (C) 1998 Published by Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We investigate in detail the effects of a QND vibrational number measurement made on single ions in a recently proposed measurement scheme for the vibrational state of a register of ions in a linear rf trap [C. D'HELON and G. J. MILBURN, Phys Rev. A 54, 5141 (1996)]. The performance of a measurement shows some interesting patterns which are closely related to searching.
Resumo:
Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it computes either a small matrix exponential in full, the action of a large sparse matrix exponential on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity. The backbone of the sparse routines consists of matrix-free Krylov subspace projection methods (Arnoldi and Lanczos processes), and that is why the toolkit is capable of coping with sparse matrices of large dimension. The software handles real and complex matrices and provides specific routines for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical issue of critical importance in the area of Markov chains and furthermore, the computed solution is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a distinct attention is assigned to the computation of transient states of Markov chains.
Resumo:
Multiple sampling is widely used in vadose zone percolation experiments to investigate the extent in which soil structure heterogeneities influence the spatial and temporal distributions of water and solutes. In this note, a simple, robust, mathematical model, based on the beta-statistical distribution, is proposed as a method of quantifying the magnitude of heterogeneity in such experiments. The model relies on fitting two parameters, alpha and zeta to the cumulative elution curves generated in multiple-sample percolation experiments. The model does not require knowledge of the soil structure. A homogeneous or uniform distribution of a solute and/or soil-water is indicated by alpha = zeta = 1, Using these parameters, a heterogeneity index (HI) is defined as root 3 times the ratio of the standard deviation and mean. Uniform or homogeneous flow of water or solutes is indicated by HI = 1 and heterogeneity is indicated by HI > 1. A large value for this index may indicate preferential flow. The heterogeneity index relies only on knowledge of the elution curves generated from multiple sample percolation experiments and is, therefore, easily calculated. The index may also be used to describe and compare the differences in solute and soil-water percolation from different experiments. The use of this index is discussed for several different leaching experiments. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A modelling framework is developed to determine the joint economic and environmental net benefits of alternative land allocation strategies. Estimates of community preferences for preservation of natural land, derived from a choice modelling study, are used as input to a model of agricultural production in an optimisation framework. The trade-offs between agricultural production and environmental protection are analysed using the sugar industry of the Herbert River district of north Queensland as an example. Spatially-differentiated resource attributes and the opportunity costs of natural land determine the optimal tradeoffs between production and conservation for a range of sugar prices.
Resumo:
A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.
Resumo:
The aim of this work was to exemplify the specific contribution of both two- and three-dimensional (31)) X-ray computed tomography to characterise earthworm burrow systems. To achieve this purpose we used 3D mathematical morphology operators to characterise burrow systems resulting from the activity of an anecic (Aporrectodea noctunia), and an endogeic species (Allolobophora chlorotica), when both species were introduced either separately or together into artificial soil cores. Images of these soil cores were obtained using a medical X-ray tomography scanner. Three-dimensional reconstructions of burrow systems were obtained using a specifically developed segmentation algorithm. To study the differences between burrow systems, a set of classical tools of mathematical morphology (granulometries) were used. So-called granulometries based on different structuring elements clearly separated the different burrow systems. They enabled us to show that burrows made by the anecic species were fatter, longer, more vertical, more continuous but less sinuous than burrows of the endogeic species. The granulometry transform of the soil matrix showed that burrows made by A. nocturna were more evenly distributed than those of A. chlorotica. Although a good discrimination was possible when only one species was introduced into the soil cores, it was not possible to separate burrows of the two species from each other in cases where species were introduced into the same soil core. This limitation, partly due to the insufficient spatial resolution of the medical scanner, precluded the use of the morphological operators to study putative interactions between the two species.