946 resultados para pH effect
Resumo:
TiO2 coated glass shows excellent stability in the range pH 2-9, however, there is rapid and complete stripping of the TiO2 coating between pH 11 and 12.
Resumo:
Twenty-four-hour pH monitoring is the 'gold standard' investigation of gastro-oesophageal reflux disease. It has been suggested that results may be influenced by lifestyle alteration during the study. The aim of this study was to determine the influence of lifestyle alteration and anxiety on outcome in pH monitoring.
Resumo:
To examine the effect of elevated pH, as reported during urinary catheter infections, on quinolone activity against the urease-producing pathogen Proteus mirabilis.
Resumo:
Perennial rye-grass plants were grown at 15°C in microcosms containing soil sampled from field plots that had been maintained at constant pH for the last 30 years. Six soil pH values were tested in the experiment, with pH ranging from 4.3-6.5. After 3 weeks growth in the microcosms, plant shoots were exposed to a pulse of 14C-CO2. The fate of this label was determined by monitoring 14C-CO2 respired by the plant roots/soil and by the shoots. The 14C remaining in plant roots and shoots was determined when the plants were harvested 7 days after receiving the pulse label. The amount of 14C (expressed as a percentage of the total 14C fixed by the plant) lost from the plant roots increased from 12.3 to 30.6% with increasing soil pH from 4.3 to 6. Although a greater percentage of the fixed 14C was respired by the root/soil as soil pH increased, plant biomass was greater with increasing soil pH. Possible reasons for observed changes in the pattern of 14C distribution are discussed and, it is suggested that changes in the soil microbial biomass and in plant nitrogen nutrition may, in particular be key factors which led to increased loss of carbon from plant roots with increasing soil pH. © 1990 Kluwer Academic Publishers.
Resumo:
This study explored the effect of HPP (400 MPa/1 min) and a Weissella viridescens protective culture, alone or in conjunction, against Listeria monocytogenes in ready-to-eat (RTE) salads with different pH values (4.32 and 5.59) during storage at 4 and 12 °C. HPP was able to reduce the counts of the pathogen after treatment achieving approximately a 4.0 and 1.5 log CFU/g reduction in the low and higher pH RTE salad, respectively. However, L. monocytogenes was able to recover and grow during subsequent storage. W. viridescens grew in both RTE salads at both storage temperatures, with HPP resulting in only a small immediate reduction of W. viridescens ranging from 0.50 to 1.2 log CFU/g depending on the pH of the RTE salad. For the lower pH RTE salad, the protective culture was able to gradually reduce the L. monocytogenes counts during storage whereas for the higher pH RTE salad in some cases it delayed growth significantly or exerted a bacteriostatic effect. exerted a bacteriostatic effect. The results revealed that the increased storage temperature led to an increase in the inactivation/inhibition of L. monocytogenes in the presence of W. viridescens. The combination of HPP and W. viridescens is a promising strategy to control L. monocytogenes and can increase safety even when a break in the chill chain occurs.
Resumo:
A análise da mobilidade seminal é uma ferramenta importante para reprodução em aquacultura. Esta é uma técnica in vitro que auxilia a estabulação, manutenção e selecção de lotes de reprodutores. A análise de mobilidade seminal pode tornar-se potencialmente uma ferramenta para o melhoramento das condições do ambiente de fertilização. A utilização do software CASA (Computer Assisted Sperm Analysis) revolucionou a descrição e quantificação específica da mobilidade seminal. A maioria da informação recolhida sobre mobilidade de sémen de peixes baseia-se em espécies de água doce, pelo que é crucial conhecer as condições óptimas de activação da mobilidade de espermatozóides para novas espécies de de água salgada de interesse em aquacultura tal como Solea senegalensis. A optimização das condições de fertilização desta espécie é particularmente importante já que os lotes de reprodutores em cativeiro podem desenvolver disfunções reprodutoras. Este trabalho teve como objectivo realizar a avaliação das condições óptimas de activação da mobilidade do sémen em S. senegalensis em termos de temperatura, salinidade e pH. O segundo objectivo foi realizar a avaliação da influência de fluido ovárico homólogo (S. senegalensis) e heterólogo (Epinephelus marginatus) na mobilidade seminal de S. senegalensis. Deste modo foram realizados dois conjuntos de experiências: 1) mobilidade de sémen de 7 machos analisado através do CASA em diferentes temperaturas, salinidades e pH, 2) mobilidade de sémen de 8 machos activados na presença de diferentes concentrações de fluido ovárico. Os parâmetros do CASA foram registados e posteriormente analisados através de médias e cluster analysis. Concluiu-se que temperaturas mais elevadas (20 ºC) e baixas salinidades (25 ‰ e 30 ‰) da solução de activação ocorre um melhoramento das características de mobilidade seminal, tal como a velocidade. A presença de fluido ovárico em baixas concentrações melhora as características da mobilidade seminal assim como a longevidade dos espermatozóides. O fluido ovárico é consequentemente um factor que estimula a mobilidade seminal que tem sido negligenciado em estudos anteriores. Este estudo demonstrou que durante a época de reprodução a temperatura da água (20 ºC) e a salinidade (25 ‰ e 30 ‰) no tanque são os principais factores que melhoram a activação da mobilidade do sémen, sendo consequentemente uma contribuição importante para compreender a dinâmica do processo de fertilização em S. senegalensis.
Resumo:
The first objective of this study was to identify appropriate sensory descriptors to assess the astringent sub-qualities of red wine. The influence of pH and ethanol on the sensation of astringency in red wine was evaluated, using a de-alcoholized red wine. A portion of the wine was adjusted to the pH values of 3.2, 3.4, 3.6 and 3.8, and another portion was adjusted to ethanol concentrations of 0%, 6%, 12%, and 15%. In addition, the pH 3.4 and 3.6 treatments were adjusted to an ethanol concentration of 12% and 15% all wines were then assessed sensorially and seventeen terms were identified, through panel discussion, to describe the mouth-feel and taste qualities: velvet, aggressive, silk/satin, dry, fleshy, unripe, pucker viscosity, abrasive, heat, chewy, acidity, grippy/adhesive, bitter, balance, overall astringency, and mouth-coat. Descriptive analysis profiling techniques were used to train the panel and measure the intensity of these attributes. It was found that decreasing pH values (averaged across all ethanol concentrations) showed an increase in the overall astringency of the wine. The combined treatments of ethanol and pH, real wine parameters (pH 3.4 and 3.6; 12% and 15% ethanol) did not have an effect on the perception of the astringent sub-qualities of the wine. A time intensity study was also included using the pH and ethanol adjusted wines, which showed that as the ethanol level of the wines increased so did the time to maximum intensity. The second objective was to identify appropriate sensory descriptors to evaluate the influence of grape maturity and maceration technique (grape skin contact) on the astringency sub-qualities of red vinifera wines from Niagara. The grapes were harvested across two dates, representing an early harvest and a late harvest. A portion of the Cabernet Sauvignon grapes wine was divided into three maceration treatments of oneweek maceration, standard two-week maceration, three-week maceration, and MCM. Another portion of both the early and late harvest Cabernet Sauvignon grapes were chaptalized to yield a final ethanol concentration of 14.5%. The wines were assessed sensorially and thirteen terms were identified, through panel discussion, to describe the mouth-feel and taste qualities: carbon dioxide, pucker, acidity, silk/chamois, dusty/chalky/powdery, sandpaper, numbing, grippy/adhesive, dry, mouthcoat, bitter, balance and, overall astringency. Descriptive analysis techniques were used to train the panel and measure the intensity of these attributes. The data revealed few significant differences in the mouth-feel of the wines with respect to maturity; which included differences in overall astringency and balance. There were varietal differences between Cabernet Sauvignon, Cabernet Franc, and Pinot Noir and differences for Cabernet Sauvignon wines due to the length and manner of maceration and as a result of chaptalization. Statistical analysis revealed a more complex mouth-feel for the Pinot Noir wines; and an increase in the intensity of the astringent sub-qualities as a result of the addition of sugar to the wines. These findings have implications for how processing decisions, such as optimum grape maturity and vinification methods may affect red wine quality.
Resumo:
Single photon timing was used to study picosecond chlorophyll a fluorescence decay kinetics of pH induced non-photochemical quenching in spinach photosystem 2 particles. The characteristics of this quenching are a decrease in chlorophyll a fluorescence yield as well as a decrease in photochemistry at low pH. Picosecond kinetics of room temperature fluorescence temporally resolve the individual components of the steady state fluorescence yield into components that are related to primary energy conversion processes in photosystem 2. Four components were resolved for dark adapted (Fo), light saturated (Fm), and chemically reduced (Nadithionite) photosystem 2 reaction centres. The fastest and slowest components, indicative of energy transfer to and energy capture by the photosystem 2 reaction centre and uncoupled ("dead") chlorophyll, respectively, were not affected by changing pH from 6.5 to 4.0. The two intermediate components, indicative of electron transfer processes within the reaction centre of photosystem 2, were affected by the pH change. Results indicate that the decrease in the steady state fluorescence yield at low pH was primarily due to the decrease in lifetime and amplitude of the slower of the intermediate components. These results imply that the decrease in steady state fluorescence yield at low pH is not due to changes in energy transfer to and energy capture by the photosystem 2 reaction centre, but is related to changes in charge stabilization and charge recombination in the photosystem 2 reaction centre.
Resumo:
Hyperammonemia is a key factor in the pathogenesis of hepatic encephalopathy (HE) as well as other metabolic encephalopathies, such as those associated with inherited disorders of urea cycle enzymes and in Reye's syndrome. Acute HE results in increased brain ammonia (up to 5 mM), astrocytic swelling, and altered glutamatergic function. In the present study, using fluorescence imaging techniques, acute exposure (10 min) of ammonia (NH4+/NH3) to cultured astrocytes resulted in a concentration-dependent, transient increase in [Ca2+]i. This calcium transient was due to release from intracellular calcium stores, since the response was thapsigargin-sensitive and was still observed in calcium-free buffer. Using an enzyme-linked fluorescence assay, glutamate release was measured indirectly via the production of NADH (a naturally fluorescent product when excited with UV light). NH4+/NH3 (5 mM) stimulated a calcium-dependent glutamate release from cultured astrocytes, which was inhibited after preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester but unaffected after preincubation with glutamate transport inhibitors dihydrokainate and DL-threo-beta-benzyloxyaspartate. NH4+/NH3 (5 mM) also induced a transient intracellular alkaline shift. To investigate whether the effects of NH4+/NH3 were mediated by an increase in pH(i), we applied trimethylamine (TMA+/TMA) as another weak base. TMA+/TMA (5 mM) induced a similar transient increase in both pH(i) and [Ca2+]i (mobilization from intracellular calcium stores) and resulted in calcium-dependent release of glutamate. These results indicate that an acute exposure to ammonia, resulting in cytosolic alkalinization, leads to calcium-dependent glutamate release from astrocytes. A deregulation of glutamate release from astrocytes by ammonia could contribute to glutamate dysfunction consistently observed in acute HE.