945 resultados para ovulation rate
Resumo:
Coodernação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
The effects of estradiol benzoate (EB) and estradiol cypionate (EC) on induction of ovulation after a synchronized LH surge and on fertility of Bos indicus females submitted to timed AI (TAI) were evaluated. In Experiment 1, ovariectomized Nelore heifers were used to evaluate the effect of EB (n = 5) and EC (n = 5) on the circulating LH profile. The LH surge timing (19.6 and 50.5 h; P = 0.001), magnitude (20.5 and 9.4 ng/mL; P = 0.005), duration (8.6 and 16.5 h; P = 0.001), and area under the LH curve (158.6 and 339.4 ng/mL; P = 0.01) differed between the EB and EC treatments, respectively. In Experiment 2 (follicular responses; n = 60) and 3 (pregnancy per AI; P/AI; n = 953) suckled Bos indicus beef cows submitted to an estradiol/progesterone-based synchronization protocol were assigned to receive one of two treatments to induce synchronized ovulation: 1 mg of EB im 24 h after progesterone (P4) device removal or 1 mg of EC im at P4 device removal. There was no difference (P > 0.05) between EB and EC treatments on follicular responses (maximum diameter of the ovulatory follicle, 13.1 vs. 13.9 mm; interval from progesterone device removal to ovulation, 70.2 vs. 68.5 h; and ovulation rate, 77.8 vs. 82.8%, respectively). In addition, P/AI was similar (P < 0.22) between the cows treated with EB (57.5%; 277/482) and EC (61.8%; 291/471). In conclusion, despite pharmacologic differences, both esters of estradiol administered either at P4 device removal (EC) or 24 h later (EB) were effective in inducing an LH surge which resulted in synchronized ovulations and similar P/AI in suckled Bos indicus beef cows submitted to TAI. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The aim of the present study was to evaluate the effects of the PGF2˛treatment givenat the onset of a synchronization of ovulation protocol using a norgestomet (NORG) earimplant on ovarian follicular dynamics (Experiment 1) and pregnancy per AI (P/AI; Exper-iment 2) in cyclic (CL present) Bos indicus heifers. In Experiment 1, a total of 46 heiferswere presynchronized using two consecutive doses of PGF2˛12 days apart. At first dayof the synchronization protocol the heifers received implants containing 3 mg of NORGand 2 mg of estradiol benzoate (EB). At the same time, heifers were randomly assignedto receive 150 mg of d-cloprostenol (n = 23; PGF2˛) or no additional treatment (n = 23;Control). When the ear implants were removed 8 days later, all heifers received a PGF2˛treatment and 1 mg of EB was given 24 h later. The follicular diameter and interval toovulation were determined by transrectal ultrasonography. No effects of PGF2˛treat-ment on the diameter of the largest follicle present were observed at implant removal(PGF2˛= 9.8 ± 0.4 vs. Control = 10.0 ± 0.3 mm; P = 0.73) or after 24 h (PGF2˛= 11.1 ± 0.4 vs.Control = 11.0 ± 0.4 mm; P = 0.83). No differences in the time of ovulation after ear implantremoval (PGF2˛= 70.8 ± 1.2 vs. Control = 73.3 ± 0.9 h; P = 0.10) or in the ovulation rate(PGF2˛= 87.0 vs. Control = 82.6%; P = 0.64) between treatments were observed. In Experi-ment 2, 280 cyclic heifers were synchronized using the same experimental design describedabove (PGF2˛; n = 143 and Control; n = 137), at random day of the estrous cycle. All heifersreceived 300 IU of equine chorionic gonadotropin (eCG) and 0.5 mg of estradiol cypionate(as ovulatory stimulus) when the NORG ear implants were removed. Timed artificial insem-ination (TAI) was performed 48 h after implant removal and the pregnancy diagnosis wasconducted 30 days later. No effects on the P/AI due to PGF2˛treatment were observed(PGF2˛= 51.7 vs. Control = 57.7%; P = 0.29). In conclusion, PGF2˛treatment at the onset ofNORG-based protocols for the synchronization of ovulation did not alter the ovarian follic-ular responses or the P/AI in cyclic Bos indicus beef heifers synchronized for TAI.
Resumo:
Forty-four Hampshire (H) and 41 Suffolk (S) ewes were allotted within breed to one of four treatment groups (VitA, VitE, VitAE, and Control) to evaluate the effect of supplemental vitamin E and A on reproductive performance of ewes mated on pasture or in drylot. Beginning two weeks before the mating period, ewes received 0 or 300 IU of vitamin E every 14 days and 0 or 250,000 IU of vitamin A every 28 days. Hampshire ewes remained on pasture during the mating period, whereas S ewes were moved to drylot. Treatment did not affect ovulation rate (OR), embryonic loss (EL), fetal loss (FL) or litter size (LS) of H ewes. Embryonic loss was higher (P<.05) in the H yearlings and two-year olds than in older ewes. Litter size was lower (P<.01) for H yearlings compared with other age groups. Suffolk ewes in the VitE group exhibited a lower (P<.01) OR than S ewes in other treatment groups, but no effect of treatment was observed for EL, FL, or LS. Although S yearling ewes did not differ from ewes of other age groups for OR and EL, they did produce fewer (P<.05) lambs. Analysis of serum samples revealed that H yearling ewes exhibited lower (P<.05) serum a-tocopherol levels than older H ewes. In addition, H ewes had a higher (P<.05) serum a-tocopherol level than S ewes at the beginning of study when they were managed as one group. Even though age and breed influenced certain reproductive parameters, results of this study indicate little effect of supplemental vitamin E and A on the overall reproductive efficiency of ewes mated on pasture or in drylot.
Resumo:
Forty Hampshire and 40 Suffolk ewes were allotted to one of four groups (VitA, VitE, VitA&E, Control) in a 2 x 2 factorial treatment arrangement to evaluate the effect of supplemental vitamin E (0 or 300 IU) and vitamin A (0 or 250,000 IU) on reproductive performance. Laparoscopy and ultrasonography were used to measure ovulation rate, embryonic loss, and fetal loss. Serum profiles of a-tocopherol (vitamin E) and retinol (vitamin A) also were monitored. There were no differences (P>.05) among treatment groups in any reproductive trait. Suffolk ewes exhibited a higher (P<.02) ovulation rate than Hampshire ewes, and yearling ewes incurred higher (P<.001) embryonic loss than other age groups, resulting in a lower (P<.001) litter size. Serum levels of a-tocopherol were higher (P<.05) for Hampshire than for Suffolk ewes and were lower (P<.001) in yearling ewes versus ewes two years of age and older. Serum levels of a-tocopherol declined (P<.01) throughout the study in VitA and Control ewes but remained unchanged in VitE and VitA&E ewes. Serum level of retinol remained unchanged in VitA ewes, whereas the level increased (P<.01) initially in VitE, VitA&E, and Control ewes before declining toward initial levels. Correlations were detected between ovulation rate and the change of pre-mating a-tocopherol serum level (r=-.29; P<.02), the change in pre-mating retinol serum level (r=-.50; P<.02) and the interval from vitamin A injection (r=-.60; P<.05). These data indicate significant influences of breed, age, and treatment on a-tocopherol and retinol serum levels in ewes and suggest that the timing of vitamin A administration may influence ovulation rate; however, vitamin supplementation, administered at random stages of the estrous cycle, was unable to alter flock reproductive performance.
Resumo:
O objetivo do experimento I foi avaliar a redução do tempo de permanência do dispositivo de P4 de 9 para 7 dias sob parâmetros reprodutivos de vacas Nelore. Foram utilizadas 674 vacas lactantes entre 40-60 dias pós parto que receberam no início do protocolo (d0) BE + CIDR. No momento da retirada do CIDR foi administrado PGF2 α, ECP e eCG. A IATF ocorreu 55 e 48 horas após a retirada do dispositivo nos tratamentos 7d-CIDR e 9d-CIDR, respectivamente. Dez dias após a IA foi realizada colheita de sangue para dosagem de P4 sérica e confirmação da ovulação. Vacas tratadas com 7d-CIDR apresentaram menor (p < 0,01) folículo ovulatório em relação ao 9d-CIDR. No entanto, a concentração de P4 pós-IA, taxas de ovulação, detecção de estro e prenhez não foram influenciadas pelo tempo de permanência do CIDR. Assim, o uso do CIDR por 7 dias promoveu desempenho reprodutivo semelhante em vacas Nelore comparado ao protocolo com 9 dias. O experimento II teve o objetivo de avaliar os efeitos da reutilização do CIDR por até 35 dias de uso em vacas e 42 dias em novilhas Nelore. Utilizou-se 749 vacas lactantes 40-60 dias pós parto e 92 novilhas púberes. No d0 os animais receberam BE + CIDR novo (CIDR1) ou previamente usado por 7 (CIDR2), 14 (CIDR3), 21 (CIDR4), 28 (CIDR5) e 35 (CIDR6) dias. No momento da retirada do CIDR (d7) foi administrado PGF2 α, ECP, eCG e exame de US para mensuração do maior folículo (FD), além de colheita de sangue para dosagem de P4. A IATF ocorreu 55 horas após a retirada do dispositivo. O diâmetro do FD foi maior (p < 0,01) de acordo com o maior número de usos do CIDR nas vacas, a concentração de P4 reduziu nos CIDRs reutilizados porém se mantiveram acima de 1,5 ng/ml e a taxa de prenhez não foi afetada pela reutilização do dispositivo por até 5 vezes em vacas e o sexto uso em novilhas. O protocolo com 7 dias de permanência permite a reutilização do CIDR por até 6 vezes mantendo a mesma eficiência reprodutiva. No experimento III o objetivo foi avaliar se a aplicação do eCG dois dias antes da retirada do dispositivo aumenta o tamanho do FO, CL e taxa de prenhez. Foram utilizadas 681 vacas lactantes 40-60 dias pós parto e 182 novilhas púberes. Os animais foram distribuídos em dois tratamentos com aplicação de eCG no quinto (5d-eCG) ou sétimo dia (7d-eCG). No d0, os animais receberam BE + CIDR e no dia 7 o CIDR foi retirado e administrado PGF2 α e ECP. Dez dias após a IA foi realizada US para mensuração do CL e colheita de sangue para dosagem de P4. A IATF ocorreu 55 horas após a retirada do dispositivo. O tratamento 5d-eCG aumentou (p < 0,01) o FO nas vacas em relação ao grupo 7deCG e o mesmo ocorreu nas novilhas. Em vacas, a concentração de P4 pós IA foi mais alta (p = 0,04) no 5d-eCG. Em novilhas o diâmetro do CL pós-IA foi maior (p < 0,01) no 5d-eCG. No entanto, a antecipação da aplicação do eCG foi eficiente em aumentar o folículo ovulatório no momento da IATF, mas não aumentou a taxa de prenhez
Resumo:
A loss of function mutation in growth differentiation factor 9 (GDF9) in sheep causes increased ovulation rate and infertility in a dosage-sensitive manner. Spontaneous dizygotic (DZ) twinning in the human is under genetic control and women with a history of DZ twinning have an increased incidence of multiple follicle growth and multiple ovulation. We sequenced the GDF9 coding region in DNA samples from 20 women with DZ twins and identified a four-base pair deletion in GDF9 in two sisters with twins from one family. We screened a further 429 families and did not find the loss of function mutation in any other families. We genotyped eight single nucleotide polymorphisms across the GDF9 locus in 379 families with two sisters who have both given birth to spontaneous DZ twins (1527 individuals) and 226 triad families with mothers of twins and their parents (723 individuals). Using case control analysis and the transmission disequilibrium test we found no evidence for association between common variants in GDF9 and twinning in the families. We conclude that rare mutations in GDF9 may influence twinning, but twinning frequency is not associated with common variation in GDF9.
Resumo:
Gametic selection during fertilization or the effects of specific genotypes on the viability of embryos may cause a skewed transmission of chromosomes to surviving offspring. A recent analysis of transmission distortion in humans reported significant excess sharing among full siblings. Dizygotic (DZ) twin pairs are a special case of the simultaneous survival of two genotypes, and there have been reports of DZ pairs with excess allele sharing around the HLA locus, a candidate locus for embryo survival. We performed an allele-sharing study of 1,592 DZ twin pairs from two independent Australian cohorts, of which 1,561 pairs were informative for linkage on chromosome 6. We also analyzed allele sharing in 336 DZ twin pairs from The Netherlands. We found no evidence of excess allele sharing, either at the HLA locus or in the rest of the genome. In contrast, we found evidence of a small but significant (P = .003 for the Australian sample) genomewide deficit in the proportion of two alleles shared identical by descent among DZ twin pairs. We reconciled conflicting evidence in the literature for excess genomewide allele sharing by performing a simulation study that shows how undetected genotyping errors can lead to an apparent deficit or excess of allele sharing among sibling pairs, dependent on whether parental genotypes are known. Our results imply that gene-mapping studies based on affected sibling pairs that include DZ pairs will not suffer from false-positive results due to loci involved in embryo survival.
Resumo:
Recently a protocol was developed that precisely synchronizes the time of ovulation in lactating dairy cows (Ovsynch; GnRH-7d-PGF(2 alpha)-2d-GnRH). We evaluated whether initiation of Ovsynch on different days of the estrous cycle altered the effectiveness of this protocol. The percentage of cows (n=156) ovulating to the first GnRH was 64% and varied (P<0.01) by stage of estrous cycle. Treatment with PGF(2 alpha) was effective, with 93% of cows having low progesterone at second GnRH. The overall percentage of cows that ovulated after second GnRH (synchronization rate) was 87% and varied by response to first GnRH (92% if ovulation to first GnRH vs 79% if no ovulation; P<0.05). There were 6% of cows that ovulated before the second injection of GnRH and 7% with no detectable ovulation by 48 h after second GnRH. Maximal diameter of the ovulatory follicle varied by stage of estrous cycle, with cows in which Ovsynch was initiated at midcycle having the smallest follicles. In addition, milk production and serum progesterone concentration on the day of PGF(2 alpha) affected (P<0.05) size of the ovulatory follicle. Using these results we analyzed pregnancy rate at Days 28 and 98 after Al for cows (n=404) in which Ovsynch was initiated on known days of the estrous cycle. Pregnancy rate was lower for cows expected to ovulate larger follicles than those expected to ovulate smaller follicles (P<0.05; 32 vs 42%). Thus, although overall synchronization rate with Ovsynch was above, 85%, there were clear differences in response according to day of protocol initiation. Cows in which Ovsynch was initiated near midcycle had smaller ovulatory follicles and greater pregnancy rates. (C) 1999 by Elsevier B.V.
Resumo:
BACKGROUND: A randomized controlled trial (RCT) comparing highly purified human Choriogonadotrophin (HP-hCG) and recombinant hCG (r-hCG) both administered subcutaneously for triggering ovulation in controlled ovarian stimulation (COS) for Assisted Reproductive Technology (ART). METHODS: Multi-centre (n = 4), prospective, controlled, randomized, non-inferiority, parallel group, investigator blind design, including 147 patients. The trial was registered with www.clinicaltrials.gov, using the identifier: NCT00335569. The primary endpoint is the number of oocytes retrieved, while the secondary endpoints include embryo implantation, pregnancy and delivery rates as well as safety parameters. RESULTS: The number of retrieved oocytes was not inferior when HP-hCG was used as compared to r-hCG: the mean number was 13.3 (6.8) in HP-hCG and 12.5 (5.8) in the r-hCG group (p = 0.49) with a 95% CI (-1.34, 2.77). Regarding the secondary outcomes, there were also no differences in fertilization rate at 57.3% (467/815) vs. 61.3% (482/787) (p = 0.11), the number of embryos available for transfer and cryopreservation (2PN stage) and implantation, pregnancy and delivery rates. Furthermore, there were no differences in the number and type of adverse events reported. HP-hCG was therefore not inferior to r-hCG. CONCLUSIONS: HP-hCG and r-hCG are equally efficient and safe for triggering ovulation in ART and, both being administered subcutaneously, equally practical and well tolerated by patients.
Resumo:
Girolando (Gir x Holstein) is a very common dairy breed in Brazil because it combines the rusticity of Gir (Bos indicus) with the high milk yield of Holstein (Bos taurus). The ovarian follicular dynamics and hormonal treatments for synchronization of ovulation and timed artificial insemination were studied in Girolando heifers. The injection of a gonadotrophin-releasing hormone (GnRH) agonist was followed 6 or 7 days (d) later by prostaglandin F2a (PGF2a). Twenty-four hours after PGF2a injection either human chorionic gonadotropin (hCG, GPh-d6 and GPh-d7 groups) or estradiol benzoate (EB, GPE-d6 and GPE-d7 groups) was administered to synchronize ovulation and consequently allow timed artificial insemination (AI) 24 and 30 h after hCG and EB injection, respectively. Follicular dynamics in Girolando heifers was characterized by the predominance of three follicular waves (71.4%) with sizes of dominant follicles (10-13 mm) and corpus luteum (approximately 20 mm) similar to those for Bos indicus cattle. In the GnRH-PGF-hCG protocol, hCG administration induced earlier ovulation (67.4 h, P<0.01) compared to the control group (GnRH-PGF) and a better synchronization of ovulation, since most of it occurred within a period of 12 to 17 h. Pregnancy rate after timed AI was 42.8 (3/7, GPh-d6) to 50% (7/14, GPh-d7). In contrast, estradiol benzoate (GnRH-PGF-EB protocol) synchronized ovulation of only 5 of 11 heifers from the GPE-d7 group and of none (0/7) from the GPE-d6 group, which led to low pregnancy rates after timed AI (27.3 and 0%, respectively). However, since a small number of Girolando heifers was used to determine pregnancy rates in the present study, pregnancy rates should be confirmed with a larger number of animals.
Resumo:
The present study investigated how the timing of the administration of estradiol benzoate (EB) impacted the synchronization of ovulation in fixed-time artificial insemination protocols of cattle. To accomplish this, two experiments were conducted, with EB injection occurring at different times: at withdrawal of the progesterone-releasing (N) intravaginal device or 24 h later. The effectiveness of these times was compared by examining ovarian follicular dynamics (Experiment 1, n = 30) and conception rates (Experiment 2, n = 504). In Experiment 1, follicular dynamics was performed in 30 Nelore cows (Bos indicus) allocated into two groups. on a random day of the estrous cycle (Day 0), both groups received 2 mg of EB i.m. and a P4-releasing intravaginal device, which was removed on Day 8, when 400 IU of eCG and 150 mu g of PGF were administered. The control group (G-EB9; n = 15) received 1 mg of EB on Day 9, while Group EB8 (G-EB8; n = 15) received the same dose a day earlier. Ovarian ultrasonographic evaluations were performed every 8 h after device removal until ovulation. The timing of EB administration (Day 8 compared with Day 9) did affect the interval between P4 device removal to ovulation (59.4 +/- 2.0 h compared with 69.3 +/- 1.7 h) and maximum diameter of dominant (1.54 +/- 0.06 a cm compared with 1.71 +/- 0.05 b cm, P = 0.03) and ovulatory (1.46 +/- 0.05 a cm compared with 1.58 +/- 0.04 b cm, P < 0.01) follicles. In Experiment 2,504 suckling cows received the same treatment described in Experiment 1, but insemination was performed as follows: Group EB8-AI48h (G-EB8-AI48h; n = 119) and Group EB8-AI54h (G-EB8-AI54h; n = 134) received 1 mg of EB on Day 8 and FrAI was performed, respectively, 48 or 54 h after P4 device removal. Group EB9-AI48h (G-EB9-AI48h; n = 126) and Group EB9-AI54h (G-EB9-AI54h n = 125) received the same treatments and underwent the same FTAI protocols as G-EB8-AI48h and G-EB8-AI54h, respectively; however, EB was administered on Day 9. Conception rates were greater (P < 0.05) in G-EB9-AI54h 163.2% (79/125) a], G-EB9-AI48h [58.7% (74/126) a] and G-EB8-AI48h [58.8% (70/119) a] than in G-EB8-AI54h [34.3% (46/134) b]. We concluded that when EB administration occurred at device withdrawal (D8), the interval to ovulation shortened and dominant and ovulatory follicle diameters decreased. Furthermore, when EB treatment was performed 24 h after device removal, FTAI conducted at either 48 or 54 h resulted in similar conception rates. However, EB treatment on the same day as device withdrawal resulted in a lesser conception rate when FTAI was conducted 54 h after device removal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
It was analyzed in this work the influence of photoperiod on time interval from ovulation induction period to extrusion of ovocits in female bullfrogs (Lithobates catesbeianus). It was used 54 females reared from metamorphosis to 9 months of age under three photoperiods: dark time (DL 0:24), 16 hours of daylight (DL 16:8) and 12 hours of daylight (DL 12:12). Ovulation was induced by intramuscular application of two doses of LHRHa with 12 hours of interval between the injections. After 10, 25, 28, 31, 34 and 37 hours from the first hormone injection, 10-gram samples (3,000 eggs) were extracted from each female at each time interval and fertilized. Egg hatching rate was checked in each sample 72 hours after fertilization. Analysis of variance showed a significant effect of extrusion delay and the interaction between photoperiod and this delay. Extrusion should be carried out 33, 24 and 26 hours after the first hormone dosage in females reared in environments without light, with 12 hours of daylight and with 16 hours of daylight, respectively, to obtain the maximum fertilization rate.