681 resultados para orthopaedic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible relationship between nutritional status and clinical outcome following orthopaedic hip surgery was investigated. The nutritional status of 60 elderly female patients admitted for elective total hip replacement (THR) and emergency fractured neck of femur surgery (FNF) was measured over time. Specific measures of clinical outcome, including well-being and functional status, were monitored during hospital stay and at 4, 8 and 26 weeks following discharge. Patients were allocated to a high nutritional risk group where any three of the following were less than the 5th percentile value: serum albumin, haemoglobin, triceps skinfold thickness, mid-upper arm muscle circumference and body weight. Using this definition, malnutrition was present in 4% of THR patients and 41% of FNF patients. It was found that the high risk patients had significantly longer convalescence periods, (median stay27.5 days compared with 0 days, P < 0.0009), and a greater proportion were dependent upon walking frames at 6 months (46% compared with 11%, P < 0.01). Fifty percent of the high risk patients had been living independently prior to admission, in contrast only 29% had returned to their homes at 6 months after discharge. The results indicate an apparent link between clinical outcome and nutritional status based upon the allocation procedure employed, which has the potential for ensuring cost-effective nutritional intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential nutritional and clinical benefits of sip-feed supplements were investigated by means of a controlled trial in elderly female patients admitted for orthopaedic surgery. A nutritional risk assessment procedure (Nutritional Risk Questionnaire, NRQ) was used to identify patients who might benefit from supplementation. Patients identified as high risk who did not receive supplements showed significant losses in triceps skinfold thickness (TSF) and mid-upper arm muscle circumference (MUAMC) measurements during hospitalization. Such changes were not observed in high-risk supplemented patients, but significant losses of MUAMC were also recorded in a group of patients who failed to comply with the supplement. No differences in biochemical parameters, muscle function, or clinical outcome were observed between supplemented and unsupplemented and non-compliant patients. The problems of poor compliance to sip-feed supplements and failure to observe clinical benefit in supplemented patients are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various types of titanium alloys with high strength and low elastic modulus and, at the same time, vanadium and aluminium free have been developed as surgical biomaterials in recent years. Moreover, porous metals are promising hard tissue implants in orthopaedic and dentistry, where they mimic the porous structure and the low elastic modulus of natural bone. In the present study, new biocompatible Ti-based alloy foams with approximate relative densities of 0.4, in which Sn and Nb were added as alloying metals, were synthesised through powder metallurgy method.
The new alloys were prepared by mechanical alloying and subsequently sintered at high temperature using a vacuum furnace. The characteristics and the processability of the ball milled powders and the new porous titanium-based alloys were characterised by X-ray diffraction, optical
microscopy and scanning electron microscopy .The mechanical properties of the new titanium alloys were examined by Vickers microhardness measurements and compression testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffractometry (XRD) were used for the characterisation of the phase transformations of the dried gels and coated surface structures. Scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) was used for the observation and evaluation of the morphology and phases of the surface layers and for the assessment of the in vitro tests. The in vitro assessments were performed by soaking the HA/TiO2 double coated samples into the simulated body fluid (SBF) for various periods. The TiO2 layer was coated by a dipping-coating method at a speed of 12 cm/min, followed by a heat treatment at 600 °C for 20 min. The HA layer was subsequently dipping-coated on the outer surface at the same speed and then heat-treated at difference temperatures. The results indicat that the HA phase begins to crystallize after a heat treatment at 560 °C. The crystallinity increases obviously at 760 °C. SEM observations find no delamination or crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA/TiO2 coated Ti scaffolds displays excellent bone-like apatite forming ability when it is soaked into SBF. Ti scaffolds after HA/TiO2 double coatings can be anticipated as promising implant materials for orthopaedic applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of artificial organs and implants for replacement of injured and diseased hard tissues such as bones, teeth and joints is highly desired in orthopedic surgery. Orthopedic prostheses have shown an enormous success in restoring the function and offering high quality of life to millions of individuals each year. Therefore, it is pertinent for an engineer to set out new approaches to restore the normal function of impaired hard tissues.

Over the last few decades, a large number of metals and applied materials have been developed with significant improvement in various properties in a wide range of medical applications. However, the traditional metallic bone implants are dense and often suffer from the problems of adverse reaction, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. Scientific advancements have been made to fabricate porous scaffolds that mimic the architecture and mechanical properties of natural bone. The porous structure provides necessary framework for the bone cells to grow into the pores and integrate with host tissue, known as osteointegration. The appropriate mechanical properties, in particular, the low elastic modulus mimicking that of bone may minimize or eliminate the stress-shielding problem. Another important approach is to develop biocompatible and corrosion resistant metallic materials to diminish or avoid adverse body reaction. Although numerous types of materials can be involved in this fast developing field, some of them are more widely used in medical applications. Amongst them, titanium and some of its alloys provide many advantages such as excellent biocompatibility, high strength-to-weight ratio, lower elastic modulus, and superior corrosion resistance, required for dental and orthopedic implants. Alloying elements, i.e. Zr, Nb, Ta, Sn, Mo and Si, would lead to superior improvement in properties of titanium for biomedical applications.

New processes have recently been developed to synthesize biomimetic porous titanium scaffolds for bone replacement through powder metallurgy. In particular, the space holder sintering method is capable of adjusting the pore shape, the porosity, and the pore size distribution, notably within the range of 200 to 500 m as required for osteoconductive applications. The present chapter provides a review on the characteristics of porous metal scaffolds used as bone replacement as well as fabrication processes of porous titanium (Ti) scaffolds through a space holder sintering method. Finally, surface modification of the resultant porous Ti scaffolds through a biomimetic chemical technique is reviewed, in order to ensure that the surfaces of the scaffolds fulfill the requirements for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, to enhance the strength of porous pure titanium scaffolds with high porosity, new particulate-reinforced Ti-based composites with the addition of biocompatible oxide particles such as TiO2, SiO2, ZrO2 and Nb2O5 were prepared using a powder metallurgical method. The strengths of the new particulate-reinforced titanium composites were found to be significantly higher than that of pure titanium with an excellent biocompatibility. SaOS-2 osteoblast-like cells grew and spread well on the surfaces of the new particulate-reinforced titanium composites. The present study illustrated the feasibility of using the particulate-reinforced titanium composites as an orthopaedic implant material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The utilization of total hip replacement (THR) surgery is rapidly increasing, however few data examine whether these procedures are associated with socioeconomic status (SES) within Australia. This study examined primary THR across SES for both genders for the Barwon Statistical Division (BSD) of Victoria, Australia.

Methods Using the Australian Orthopaedic Association National Joint Replacement Registry data for 2006–7, primary THR with a diagnosis of osteoarthritis (OA) among residents of the BSD was ascertained. The Index of Relative Socioeconomic Disadvantage was used to measure SES; determined by matching residential addresses with Australian Bureau of Statistics census data. The data were categorised into quintiles; quintile 1 indicating the most disadvantaged. Age- and sex-specific rates of primary THR per 1,000 person years were reported for 10-year age bands using the total population at risk.

Results Females accounted for 46.9% of the 642 primary THR performed during 2006–7. THR utilization per 1,000 person years was 1.9 for males and 1.5 for females. The highest utilization of primary THR was observed in those aged 70–79 years (males 6.1, and females 5.4 per 1,000 person years). Overall, the U-shaped pattern of THR across SES gave the appearance of bimodality for both males and females, whereby rates were greater for both the most disadvantaged and least disadvantaged groups.

Conclusions Further work on a larger scale is required to determine whether relationships between SES and THR utilization for the diagnosis of OA is attributable to lifestyle factors related to SES, or alternatively reflects geographic and health system biases. Identifying contributing factors associated with SES may enhance resource planning and enable more effective and focussed preventive strategies for hip OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Hospitalised sport and active recreation injuries can have serious long-term consequences. Despite this, few studies have examined the long-term outcomes of these injuries. The purpose of this study was to establish whether patients hospitalised with orthopaedic sport and active recreation injuries, have returned to their pre-injury levels of health status and function, 12 months post injury and identify factors associated with poor outcomes. The present work was a cohort study with retrospective assessment of pre-injury status and prospective assessment of outcome at 12 months post injury.

Methods Adults with orthopaedic sport and active recreation injuries, captured by the Victorian Orthopaedic Trauma Outcomes Registry were recruited to the study. Pre-injury and 12-month outcomes were assessed using the 36-item Short Form Health Survey (SF-36) and the extended Glasgow Outcome Scale. Differences in pre-injury and post-injury SF-36 scores were examined and demographic, injury, hospital and physical activity variables were assessed for associations with outcome using multivariate linear regression.

Results Of the 324 participants 98% were followed-up at 12 months post injury. At 12 months, participants reported a mean 7.0-point reduction in physical health (95% CI 5.8 to 7.8) and a 2.5-point reduction in mental health (95% CI 1.2 to 3.0), with 58% (95% CI 52.6% to 63.4%) reporting reduced function. Sporting group (p=0.001), Injury Severity Score >15 (p=0.007) and high pre-injury vigorous activity levels (p=0.04), were related to poorer physical health outcomes.

Conclusions At 12 months post injury, most participants reported large reductions in physical health and reduced function. This information is important for furthering our understanding of the burden of sport and active recreation injury and setting priorities for treatment and rehabilitation.