997 resultados para ornamental rocks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Totalp-Platta-Malenco ophiolites in the Eastern Central Alps offer a unique opportunity to study the behaviour of Li, Be and B in ultramafic rocks in response to serpentinization and to progressive Alpine metamorphism. These units represent the remnants of a former ocean-continent transition that was intensely serpentinized during exposure on the Jurassic seafloor of the Ligurian Tethys. From north to the south, three isograd reactions (lizardite double right arrow antigorite + brucite; lizardite + talc double right arrow antigorite; lizardite + tremolite double right arrow antigorite + diopside) have been used to quantify the evolution of the light element content of metamorphic minerals. We determined the Li, Be and B concentrations in major silicate minerals from the ultramafic bodies of Totalp, Platta and Malenco by secondary ion mass spectrometry. Mantle minerals have Be concentrations (e.g. <0.001-0.009 mu g/g in olivine) similar to the metamorphic minerals that replace them (e.g. <0.001-0.016 mu g/g in serpentine). The mantle signature of Be is thus neither erased during seafloor alteration nor by progressive metamorphism from prehnite-pumpellyite to epidote-amphibolite facies. In contrast, the Li and B inventories of metamorphic minerals are related to the lizardite-to-antigorite transition. Both elements display higher concentrations in the low-temperature serpentine polymorph lizardite (max. 156 mu/g Li, max. 318 mu g/g B) than in antigorite (max. 0.11 mu g/g Li, max. 12 mu g/g B). Calculated average B/Li ratios for lizardite (similar to 1395) and antigorite (similar to 115) indicate that Li fractionates from B during the lizardite-to-antigorite transition during prograde metamorphism in ultramafic rocks. In subduction zones, this signature is likely to be recorded in the B-rich nature of forearc fluids. Relative to oceanic mantle the Be content of mantle clinopyroxene is much higher, but similar to Be values from mantle xenoliths and subduction-related peridotite massifs. These data support previous hypothesis that the mantle rocks from the Eastern Central Alps have a subcontinental origin. We conclude that Be behaves conservatively during subduction metamorphism of ultramafic rocks, at least at low-temperature, and thus retains the fingerprint of ancient subduction-related igneous events in mantle peridotites. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To constrain deformation temperatures of mantle shear zones, we studied a strike-slip shear zone (Hilti massif, Semail ophiolite, Oman) and focused on the interaction between microstructural mechanisms and chemical equilibration processes. Quantitative microfabric analysis on harzburgites with different deformation intensity (porphyroclastic tectonite, mylonite, and ultramylonite) was combined with orthopyroxene geothermometry. The average grain size of all phases decreases with decreasing shear zone thickness. Dynamic recrystallization of porphyroclasts in combination with dissolution-precipitation and nucleation result in small-sized, chemically equilibrated pyroxenes. The composition of orthopyroxene was used to calculate deformation temperatures. In the case of the porphyroclastic tectonites, the chemical composition of orthopyroxene has been reset by diffusion yielding temperature estimates of 880-900 degrees C. The mylonites were deformed by dislocation creep of olivine and show a broad range of calculated temperatures, which result from a combination of grain size reduction and inheritance of equilibrium compositions from earlier high-temperature events and diffusion. In mylonites, diffusion profiles combined with geothermometry and grain size analysis indicate a mylonitic deformation temperature of 800-900 degrees C possibly followed by diffusion. In ultramylonites, the smallest grains (<30 mu m) reveal equilibration at temperatures of similar to 700 degrees C during the last stages of ductile deformation, which was dominated by diffusion creep of olivine. Our results provide a crucial link between temperature and evolution of microstructures from dislocation creep to diffusion creep in mantle shear zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudi de les plantes ornamentals conreades al sector esquerra de les ribes del Ter al seu pas per Girona, incidint en les espècies no autòctones i elaboració d’una cartografia digital dels arbres i arbusts de la zona de Sant Ponç (Girona)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas-water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas-water distributions. This analysis therefore suggests that the physical mechanisms governing partial saturation should be accounted for when analysing seismic data in a poroelastic framework. In this context, heterogeneities associated with the dry frame properties, which do not play important roles in wave-induced fluid flow processes per se, should be taken into account since they may determine the kind of gas distribution pattern taking place in the porous rock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study wave-induced fluid flow effects in porous rocks partially saturated with gas and water, where the saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighboring regions can exhibit different levels of saturation. In order to determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. We consider numerical experiments to analyze such effects in heterogeneous partially saturated porous media, where the saturation field is determined by realistic variations in porosity. Our results indicate that the spatially continuous nature of gas saturation inherent to this study is a critical parameter controlling the seismic response of these environments, which in turn suggests that the physical mechanisms governing partial saturation should be accounted for when analyzing seismic data in a poro-elastic context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cretaceous Mont Saint-Hilaire complex (Quebec, Canada) comprises three major rock units that were emplaced in the following sequence: (I) gabbros; (II) diorites; (III) diverse partly agpaitic foid syenites. The major element compositions of the rock-forming minerals, age-corrected Nd and oxygen isotope data for mineral separates and trace element data of Fe-Mg silicates from the various lithologies imply a common source for all units. The distribution of the rare earth elements in clinopyroxene from the gabbros indicates an ocean island basalt type composition for the parental magma. Gabbros record temperatures of 1200 to 800 degrees C, variable silica activities between 0 center dot 7 and 0 center dot 3, and f(O2) values between -0 center dot 5 and +0 center dot 7 (log delta FMQ, where FMQ is fayalite-magnetite-quartz). The diorites crystallized under uniform a(SiO2) (a(SiO2) = 0 center dot 4-0 center dot 5) and more reduced f(O2) conditions (log delta FMQ similar to-1) between similar to 1100 and similar to 800 degrees C. Phase equilibria in various foid syenites indicate that silica activities decrease from 0 center dot 6-0 center dot 3 at similar to 1000 degrees C to < 0 center dot 3 at similar to 550 degrees C. Release of an aqueous fluid during the transition to the hydrothermal stage caused a(SiO2) to drop to very low values, which results from reduced SiO(2) solubilities in aqueous fluids compared with silicate melts. During the hydrothermal stage, high water activities stabilized zeolite-group minerals. Fluid inclusions record a complex post-magmatic history, which includes trapping of an aqueous fluid that unmixed from the restitic foid syenitic magma. Cogenetic aqueous and carbonic fluid inclusions reflect heterogeneous trapping of coexisting immiscible external fluids in the latest evolutionary stage. The O and C isotope characteristics of fluid-inclusion hosted CO(2) and late-stage carbonates imply that the surrounding limestones were the source of the external fluids. The mineral-rich syenitic rocks at Mont Saint-Hilaire evolved as follows: first, alkalis, high field strength and large ion lithophile elements were pre-enriched in the (late) magmatic and subsequent hydrothermal stages; second, percolation of external fluids in equilibrium with the carbonate host-rocks and mixing processes with internal fluids as well as fluid-rock interaction governed dissolution of pre-existing minerals, element transport and precipitation of mineral assemblages determined by locally variable parameters. It is this hydrothermal interplay between internal and external fluids that is responsible for the mineral wealth found at Mont Saint-Hilaire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and ¿garnierite¿) occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Cooccurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phengites from the eclogite and blueschist-facies sequences of the Cycladic island of Syros (Greece) have been dated by the in situ UV-laser ablation Ar-40/Ar-39 method. A massive, phengite-rich eclogite and an omphacite-rich metagabbro were investigated. The phengites are eubedral and coarse-grained (several 100 mum), strain-free and exhibit no evidence for late brittle deformation or recrystallization. Apparent ages in these samples range from 43 to 50 Ma for the phengite-rich eclogite and 42 to 52 Ma for the ompbacitic metagabbro. This large spread of ages is visible at all scales-within individual grains as well as in domains of several 100 mum and across the entire sample (ca. 2 cm). Such variations have been traditionally attributed to metamorphic cooling or the incorporation of excess argon. However, the textural equilibrium between the phengites and other high pressure phases and the subtle compositional variations within the phengites, especially the preservation of growth textures, alternatively suggest that the observed range in ages may reflect variations of radiogenic argon acquired during phengite formation and subsequent growth, thus dating a discrete event on the prograde path. This implies that the oldest phengite 40Ar/39Ar ages provide the best estimate of a minimum crystallization age, which is in agreement with recently reported U-Pb and Lu-Hf geochronological data. Our results are consistent with available stable isotope data and further suggest that, under fluid-restricted conditions, both stable and radiogenic isotopic systems can survive without significant isotopic exchange during subduction and exhumation from eclogite-facies P-T conditions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O), supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste). The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol), which was incubated for 100 days, at 70 % (w/w) moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB) were the silicate rocks that most influenced soil pH, while the mining byproduct (MB) led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to evaluate the influence of continental crustal rocks on trace element budgets of serpentinized peridotites incorporated into the continental crust, we have analyzed the chemical composition of whole rock samples and minerals of the Geisspfad ultramafic complex (Swiss-Italian Alps). This complex represents a relict oceanic succession composed of serpentinites, ophicarbonates and metabasic rocks, emplaced into crustal gneisses during Alpine collision. Following peak metamorphic amphibolite facies conditions, fluid flow modified some of the trace element contents of ophicarbonates and deformed serpentinites close to the contact with country rocks. The fluid originated from the surrounding continental crustal rocks as documented by the increase of Pb in the serpentinites, and by the strongly negative all) values (-112 parts per thousand) of some ultramafic rocks close to the contact with surrounding gneisses. Little or no modification of the fluid mobile elements Li, B or U was observed in the serpentinite. In-situ analysis of light elements of serpentinite minerals indicate redistribution of light elements coupled to changes of mineral modes towards the outer 100-150 m of the massif. In the centre of the massif, Li is preferentially concentrated in olivine, while Be and B are hosted by tremolite. In contrast, at the outer rim of the massif, Li and Be are preferentially incorporated into diopside, and B into antigorite. This redistribution of light elements among the different minerals is visible in the serpentinite, at a maximum distance of -100-150 m from the ophicarbonate-metabasite contact. Our results show that interaction of ultramafic rocks and crust-derived fluids can be easily detected by studies of Pb and partial derivative D in whole rocks. We argue that small ultramafic bodies potentially record an emplacement-related trace element signature, and that crustal light element values in ultramafic rocks are not necessarily derived from a subducting slab. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An instrument designed to measure thermal conductivity of consolidated rocks, dry or saturated, using a transient method is presented. The instrument measures relative values of the thermal conductivity, and it needs calibration to obtain absolute values. The device can be used as heat pulse line source and as continuous heat line source. Two parameters to determine thermal conductivity are proposed: TMAX, in heat pulse line source, and SLOPE, in continuous heat line source. Its performance is better, and the operation simpler, in heat pulse line-source mode with a measuring time of 170 s and a reproducibility better than 2.5%. The sample preparation is very simple on both modes. The performance has been tested with a set of ten rocks with thermal conductivity values between 1.4 and 5.2 W m¿1 K¿1 which covers the usual range for consolidated rocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of the project were to develop methodologies for (i) prediction and measurement of the magnitude of pressure which develops within pores of saturated porous materials upon freezing, (ii) determination of pore structure (pore size distribution) of porous materials; (iii) prediction and measurement of the rate with which pore ice grows; and (iv) prediction of frost susceptibility of porous materials with varying pore structures. As with all research endeavors solution of one problem leads to another one and this project was no exception. Emergence of new problems and the measures taken as the work progressed were discussed in progress reports submitted to the board. This final report will discuss only the conclusive finds and suggest measures to be taken for future investigations. The theory discussed in the proposal is not repeated in this report for the sake of brevity. However, the paper published as part of this project containing the theory is attached as Appendix I for the reader interested in the theory. In conformity with the objectives, this report consists of four parts. In accordance with the project contract two ice porosimeters were built and one will be delivered to the Iowa DOT after training of a DOT technician under the supervision of Mr. Wendell Dubberke with assistance from ISU researchers. During the training period debugging and further improvements in software will continue.