956 resultados para ore deposit


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fortaleza de Minas Ni-Cu-PGE sulfide deposit is hosted by Archean komatiitic rocks of the Morro do Ferro greenstone belt, near the southwestern margin of the Sa (aFrancisco) over tildeo Francisco craton, Minas Gerais state, Brazil. The deposit contains 6 million tonnes of ore with an average grade of 2.2 wt% Ni, 0.4% Cu, 0.05% Co and 1.2 ppm PGE+Au, and comprises (i) a main orebody, which is metamorphosed, deformed and transposed along a regional shear zone, consisting mainly of disseminated, brecciated and stringer sulfide ores that are interpreted to be of early magmatic origin, and (ii) PGE-rich discordant veins that are hosted in N-S- and NE-SW-trending late faults that cross-cut the main orebody. The discordant PGE-rich ore (up to 4 ppm total PGE) is characterized by thin, discontinuous and irregular veins and lenses of massive sulfides hosted by serpentinite and talc schist, and is relatively undeformed if compared with the early types of ore. It is composed mainly of pyrrhotite, pentlandite, chalcopyrite, magnetite, carbonates, and amphiboles, with minor cobaltite-gersdorffite, sphalerite, ilmenite, and quartz, and rarely maucherite (Ni11Asg), tellurides and platinum-group minerals (PGM). Omeeite, irarsite, sperrylite, and Ni-bearing merenskyite are the main PGM, followed by minor amounts of testibiopalladite and an unknown phase containing Ru, Te, and As. The PGM occur either included in, or at the margins of, sulfides, sulfarsenides, silicates and oxides, or filling fractures in pyrrhotite, pentlandite, and chalcopyrite, suggesting that they started to precipitate with these minerals and continued to precipitate after the sulfides were formed. The mantle-normalized metal distribution of the two samples of discordant veins shows distinct patterns: one richer in Ni-Pd-Ir-Rh-Ru-Os and another with higher amounts of Cu-Pt-Bi. Both are strongly depleted in Cr if compared with the metamorphosed magmatic ore of this deposit, which follows the general Kambalda-type magmatic trend. on the basis of structural, mineralogical and geochemical evidence, we propose that the PGE-rich discordant ore may have formed by remobilization of metals from the deformed, metamorphosed magmatic orebody (which shows a depleted pattern in these elements) by reduced (pyrrhotite - pentlandite - pyrite are stable), neutral to alkaline and carbonic fluids (carbonate-stable). The PGE may have been transported as bisulfide complexes, and precipitated as tellurides (mainly Pd) and arsenides (Pt, Rh, Ru, Os, Ir) in the late N-S and NE-SW-trending faults owing to a decrease in the activity of S caused by the precipitation of sulfides in the veins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Vazante Group, located in the northwestern part of Minas Gerais, hosts the most important zinc mine in Brazil, the Vazante Mine, which represents a major known example of a hypogene nonsulfide zinc deposit. The main zinc ore is represented by willemite and differs substantially from other deposits of the Vazante-Paracatu region, which are sulfide-dominated zinc-lead ore. The age of the Vazante Group and the hosted mineralization is disputable. Metamorphosed mafic dikes (metabasites) that cut the metasedimentary sequence and are affected by hydrothermal processes recently were found and may shed light on the geochronology of this important geological unit. Zircon crystals recovered from the metabasites are xenocrystic grains that yield U-Pb conventional ages ranging from 2.1 to 2.4 Ga, so the basement of the Vazante Group is Paleoproterozoic or has metasedinientary rocks whose source area was Paleoproterozoic. Pb isotopes determined for titanite separated from the metabasites have common, nonradiogenic Ph compositions, which prevents determination of their crystallization age. However, the Pb signatures observed for the titanite crystals are in agreement with those determined for galena from the carbonate-hosted Zn-Pb deposits hosted by the Vazante Group, including galena from minor sulfide ore bodies of the Vazante deposit. These similarities suggest that the metalliferous fluids that affected the metabasites may have been those responsible for galena formation, which could imply a similar lead source for both nonsulfide and sulfide zinc deposits in the Vazante-Paracatu district. This common source could be related to deep-seated, basin-derived, metalliferous fluids associated with a long-lived hydrothermal system related to diagenesis and deformation of the Vazante Group during the Neoproterozoic. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Groundwater samples were collected for several months in boreholes drilled at Morro do Ferro, a thorium and rare earth deposit located on the Poços de Caldas Plateau, Minas Gerais State, Brazil. An aquifer system has developed in the weathered mantle due to in situ intense alteration. The weathered zone includes a thick argillaceous laterite greater than 100 m thick. The U content and 324U/238U activity ratio were measured in the groundwater samples and in spoil samples of a borehole drilled in the ore body. Some possible mechanisms related to the mobilization of uranium are considered such as complexation with humic substances and adsorption by clays. © 1989.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caxias é um depósito de ouro orogênico do fragmento cratônico São Luís, que é correlacionável aos terrenos Riacianos do Cráton Oeste-Africano. O depósito se formou após o metamorfismo regional (estimado em 2100 ± 15 Ma) e está hospedado em zona de cisalhamento que secciona xistos do Grupo Aurizona (2240 ± 5 Ma) e o Microtonalito Caxias. O microtonalito foi aqui datado em 2009 ± 11 Ma, e representa um estágio magmático tardio na evolução do fragmento cratônico São Luís. Cristais de zircão com idades de 2139 ± 10 Ma foram herdados da fonte magmática ou são produto de contaminação durante a intrusão. A composição dos isótopos de chumbo sugere que granitoides de arco de ilhas de ca. 2160 Ma são a fonte provável para o Pb incorporado na pirita relacionada com o minério. Sericita hidrotermal mostra idade 40Ar/39Ar de 1990 ± 30 Ma, que, combinada com a idade de posicionamento do microtonalito hospedeiro, limita o evento mineralizador ao intervalo 2020-1960 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O depósito aurífero de Piaba tornou-se a primeira mina em operação no fragmento cratônico São Luís, noroeste do Maranhão. Seu ambiente geológico compreende rochas metavulcanossedimentares do Grupo Aurizona e granitoides da Suíte Tromaí, entre outras unidades menores, formadas em ambiente de arcos de ilhas entre 2240 e 2150 Ma, juntamente com outras unidades menores. A mineralização é caracterizada por uma trama stockwork de veios e vênulas de quartzo com seus halos de alteração (clorita + muscovita + carbonato + pirita + calcopirita e ouro) hospedada em um granodiorito granofírico fino (Granófiro Piaba) e em rocha subvulcânica andesítica do Grupo Aurizona. O corpo mineralizado é espacialmente limitado à zona de cisalhamento ENE-WSW rúptil-dúctil (Falha Piaba). Estudos petrográficos, microtermométricos e por espectroscopia microRaman no quartzo definiram inclusões aquo-carbônicas bifásicas e trifásicas, produzidas por aprisionamento heterogêneo durante separação de fases, e fluidos aquosos tardios. A solução mineralizadora corresponde a um fluido aquo-carbônico composto por CO2 (5 - 24 mol%, densidade de 0,96 - 0,99 g/cm3), H2O (74 - 93 mol%), N2 (< 1 mol%), CH4 (<1mol%) e 5,5 % em peso NaCl equivalente. O minério depositou a 267 - 302ºC e 1,25 - 2,08 kbar, correspondendo a profundidades de 4 a 7 km, em consonância com o regime estrutural. A composição e o intervalo de P-T do fluido mineralizador, combinados com o caráter redutor (log ƒO2 -31,3 a -34,3) e a sulfetação da rocha hospedeira, sugerem que o ouro foi transportado como um complexo sulfetado. O minério foi depositado em consequência da separação de fase, redução da atividade de enxofre e da ƒO2 pela interação fluido-rocha.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho apresenta dados geológicos, petrográficos e mineralógicos referentes ao granito que hospeda o depósito aurífero Tocantinzinho e objetivou contribuir ao entendimento dos processos hidrotermais associados à sua gênese. O depósito ocorre em biotita monzogranito tardi a pós-tectônico, do subtipo oxidado da série ilmenita, que foi alojado a profundidades de 6 - 9 km. Esse granitoide encontra-se bastante fraturado e localmente brechado, tendo experimentado processos hidrotermais de grau fraco a moderado, os quais geraram duas principais variedades (salame e smoky) sem diferenças mineralógicas ou químicas importantes, porém macroscopicamente muito distintas. Vários tipos de alteração hidrotermal foram reconhecidos nas rochas granitoides, sendo representados principalmente por vênulas e pela substituição de minerais primários. A história hidrotermal teve início com a microclinização, durante a qual o protólito granítico foi em parte transformado na variedade salame. A temperaturas em torno de 330 oC ocorreu a cloritização, que produziu chamosita com XFe na faixa de 0,55 - 0,70. Seguiu-se a sericitização, durante a qual os fluidos mineralizadores precipitaram pirita, calcopirita, esfalerita, galena e ouro. À medida que a alteração progrediu, as soluções se saturaram em sílica e precipitaram quartzo em vênulas. No estágio mais tardio (carbonatação), provavelmente houve mistura entre fluidos aquosos e aquocarbônicos, de que teria resultado a reação entre Ca2+ e CO2 e formação de calcita. A maioria dos sulfetos encontra-se em vênulas, algumas em trama stockwork. O ouro é normalmente muito fino e ocorre principalmente como inclusões submicroscópicas ou ao longo de microfraturas em pirita e quartzo. O depósito Tocantinzinho é muito similar aos depósitos Batalha, Palito e São Jorge, e aos do campo Cuiú-Cuiú. Tipologicamente poderia ser classificado como depósito relacionado a intrusões.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to introduce to the reader, an iron deposit in the Princeton district, about 19 miles northeast by highway from Philipsburg, Montana. Heretofore there has been no written literature on this deposit. It is also intended to investigate the economic possibilities of iron ore in general in the State of Montana.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Yanque nonsulfide Pb-Zn deposit (inferred resources 12.5 Mt @ 3.7% Pb and @ 3.5% Zn) is located in the Andahuaylas-Yauri ore province (Cuzco, southern Peru). The deposit occurs within a base metal mineralized district, centered on the medium-sized Dolores porphyry copper. A thorough geological, mineralogical and geochemical study has carried out in order to define: the relationships between the Dolores Cu-porphyry ore and the Yanque Zn-Pb polymetallic mineralization, and the characteristics of the economic nonsulfide concentrations. Both sedimentary and igneous rocks constitute the backbone of the Yanque-Dolores area. The sedimentary lithologies belong to the Soraya, Mara and Ferrobamba Fms. (upper Jurassic-middle Cretaceous). The Yanque orebody is hosted by the Mara Fm., which prevailingly consists of a siliciclastic sedimentary breccia. The original sulfide mineralization consisted of galena, pyrite and sphalerite. The host rock has been affected by a strong hydrothermal alteration, characterized by prevailing sericite/illite, as in the typical porphyry-related phyllic-argillic alteration stage, and by minor kaolinite, dolomite and quartz. Minor element geochemistry, characterized by Sb, As, Mn, Ag and locally also by Cu, points to magmatic-hydrothermal related mineralizing fluids. The Pb isotopic compositions from Dolores and Yanque sulfides are similar, and are typical of the Tertiary magmatically-derived ores in this part of Peru. The hydrothermally altered rocks at Yanque have the same Pb isotopic compositions as the sulfides, thus confirming the hypothesis that the Yanque primary Zn-Pb mineralization may have been produced by hydrothermal circulation related to the emplacement of the Dolores Cu-porphyry, as it is the case of other porphyry Cu systems associated with polymetallic mineralization elsewhere. However, no simple genetic model for the mineralization involving just one fluid circulation episode is able to explain the data. The Yanque economic nonsulfide ore association consists of sauconite, hemimorphite, smithsonite and cerussite, which result from the weathering and alteration of the original sulfide mineralization. Zinc is allocated mainly in sauconite (Zn-smectite), rather than in carbonates: a factor strictly related to the prevailing siliciclastic character of the host rock. Distinctive features of the Yanque orebody are the comparable ore grades for both Pb and Zn (3.5% Zn and 3.7% Pb), and the inverse supergene chemical zoning. In fact, contrary to other supergene ores of this type, zinc prevails in the top zone of the Yanque deposit, whereas lead content increases with depth. Considering the different mobility of the two metals in solution, it may be assumed that most of the primary zinc that was the source for the Yanque nonsulfides was originally located far from the position occupied by the galena mineralization, whose remnants have been observed on site. Zinc sulfides may have been originally contained in the eroded rock volumes that surrounded the actual deposit: the zinc-rich solutions have possibly migrated through the siliciclastic Mara Fm. and precipitated the nonsulfide minerals by porosity filling and replacement processes. In this sense, the Yanque secondary Zn-Pb deposit could be considered as a special type of “Exotic” mineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thorium and rare-earth element (Th-REE) deposit at Morro do Ferro formed under supergene lateritic weathering conditions. The ore body consists of shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a network of magnetite layers which protected the underlying highly weathered, argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes. From petrological, mineralogical and geochemical studies, and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatitic in composition, initially enriched in Th and REEs compared to the surrounding silicate rocks. The intrusion of the carbonatite caused fenitic alteration in the surrounding phonolites, consisting of early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent weathering has completely decomposed the carbonatite forming a residual supergene enrichment of Th and REEs. Initial weathering of the carbonatite has created a chemical environment that might have been conductive to carbonate and phosphate complexing of the REEs in groundwaters. This may have appreciably restricted the dissolution of primary REE phases. Strongly oxidic weathering has resulted in a fractionation between Ce and the other light rare earth elements (LREEs). Ce3+ is oxidized to Ce4+ and retained together with Th by secondary mineral formation (cerianite, thorianite), and by adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation (Nd-lanthanite) and adsorption at greater depths down the weathering column. Seasonally controlled fluctuations of recharge waters into the weathering column may help to explain the observed repetition of Th-Ce enriched zones underlain by trivalent LREE enriched zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Central gold belt of peninsular Malaysia comprises a number of gold deposits located in the east of the N-S striking Bentong-Raub Suture Zone. The Tersang gold deposit is one of the gold deposits in the gold belt and hosted in sandstone, rhyolite and breccia units. The deposit has an inferred resource of 528,000 ounces of gold. The geochronology of the Tersang deposit has been newly constrained by LA ICP-MS U-Pb zircon dating. The maximum depositional age of the host sedimentary rocks ranges from Early Carboniferous to Early Permian (261.5 ± 4.9 Ma to 333.5 ± 2.5 Ma) for the host sandstone and Late Triassic for the rhyolite intrusion (218.8 ± 1.7 Ma). Textural characteristics of pyrite have revealed five types including (1) Euhedral to subhedral pyrite with internal fracturing and porous cores located in the sandstone layers (pyrite 1); (2) Anhedral pyrite overgrowths on pyrite 1 and disseminated in stage 1 vein (pyrite 2); (3) Fracture-filled or vein pyrite located in stages 1 and 2 vein (pyrite 3); (4) Euhedral pyrite with internal fractures also located in stage 2 vein (pyrite 4); and (5) Subhedral clean pyrite located in the rhyolite intrusion (pyrite 5). Based on pyrite mapping and spot analyses, two main stages of gold enrichment are documented from the Tersang gold deposit. Gold in sandstone-hosted pyrite 1 (mean 4.3 ppm) shows best correlation with Bi and Pb (as evidenced on pyrite maps). In addition, gold in pyrite 3 (mean 8 ppm) located in stage 2 vein shows a good correlation with As, Ag, Sb, Cu, Tl, and Pb. In terms of gold exploration, we suggest that elements such as As, Ag, Sb, Cu, Tl, Bi, and Pb associated with Au may serve as vectoring tools in gold exploration. Our new geological, structural, geochemical and isotopic data together with mineral paragenesis, pyrite chemistry and ore fluid characteristics indicate that the Tersang gold deposit is comparable to a sediment-hosted gold deposit. Our new genetic model suggests deposition of the Permo-Carboniferous sediments followed by intrusion of rhyolitic magma in the Late Triassic. At a later stage, gold mineralisation overprinted the rhyolite intrusion and the sandstone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.