994 resultados para optimum temperature


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, global demand for ethanol fuel has expanded very rapidly, and this should further increase in the near future, almost all ethanol fuel is produced by fermentation of sucrose or glucose in Brazil and produced by corn in the USA, but these raw materials will not be enough to satisfy international demand. The aim of this work was studied the ethanol production from cashew apple juice. A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentration (from 24.4 to 103.1 g.L-1). Maximal ethanol, cell and glycerol concentrations (44.4 g.L-1, 17.17 g.L-1, 6.4 g.L-1, respectively) were obtained when 103.1 g.L-1 of initial sugar concentration were used, respectively. Ethanol yield (YP/S) was calculated as 0.49 g (g glucose + fructose)-1. Pretreatment of cashew apple bagasse (CAB) with dilute sulfuric acid was investigated and evaluated some factors such as sulfuric acid concentration, solid concentration and time of pretreatment at 121°C. The maximum glucose yield (162.9 mg/gCAB) was obtained by the hydrolysis with H2SO4 0.6 mol.L-1 at 121°C for 15 min. Hydrolysate, containing 16 ± 2.0 g.L-1 of glucose, was used as fermentation medium for ethanol production by S. cerevisiae and obtained a ethanol concentration of 10.0 g.L-1 after 4 with a yield and productivity of 0.48 g (g glucose)-1 and 1.43 g.L-1.h-1, respectively. The enzymatic hydrolysis of cashew apple bagasse treated with diluted acid (CAB-H) and alkali (CAB-OH) was studied and to evaluate its fermentation to ethanol using S. cerevisiae. Glucose conversion of 82 ± 2 mg per g CAB-H and 730 ± 20 mg per g CAB-OH was obtained when was used 2% (w/v) of solid and loading enzymatic of 30 FPU/g bagasse at 45 °C. Ethanol concentration and productivity was achieved of 20.0 ± 0.2 g.L-1 and 3.33 g.L-1.h-1, respectively when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g.L-1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g.L-1), ethanol concentration and productivity was 8.2 ± 0.1 g.L-1 and 2.7 g.L-1.h-1, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 g/g glucose and 0.47 g/g glucose, with pretreated CABOH and CAB-H, respectively. The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated too in this work. First, the yeast CE025 was preliminary cultivated in a synthetic medium containing glucose and xylose. Results showed that it was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pre-treatment. The fermentation of CABH was conducted at pH 4.5 in a batch-reactor, and only ethanol was produced by K. marxianus CE025. The influence of the temperature in the kinetic parameters was evaluated and best results of ethanol production (12.36 ± 0.06 g.L-1) was achieved at 30 ºC, which is also the optimum temperature for the formation of biomass and the ethanol with a volumetric production rate of 0.25 ± 0.01 g.L-1.h-1 and an ethanol yield of 0.42 ± 0.01 g/g glucose. The results of this study point out the potential of the cashew apple bagasse hydrolysate as a new source of sugars to produce ethanol by S. cerevisiae and K. marxianus CE025. With these results, conclude that the use of cashew apple juice and cashew apple bagasse as substrate for ethanol production will bring economic benefits to the process, because it is a low cost substrate and also solve a disposal problem, adding value to the chain and cashew nut production

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclodextrin glycosyltransferase (EC 2.4.1.19) is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. An alkalophilic Bacillus strain, isolated from cassava peels, was identified as Bacillus licheniformis. CGTase production by this strain was better when potato starch was used as carbon source, followed by cassava starch and amylopectin. Glucose and amylose, on the other hand, acted as synthesis repressors. When the cultivation was supplemented with sodium ions and had the pH adjusted between 6.0 and 9.0, the microorganism maintained the growth and enzyme production capacity. This data is interesting because it contradicts the concept that alkalophilic microorganisms do not grow in this pH range. After ultrafiltration-centrifugation, one protein of 85.2 kDa with CGTase activity was isolated. This protein was identified in plates with starch and phenolphthalein. Determination of the optimum temperature showed higher activities at 25 degrees C and 55 degrees C, indicating the possible presence of more than one CGTase in the culture filtrate. Km and Vmax values were 1.77 mg/mL and 0.0263 U/mg protein, respectively, using potato starch as substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclodextrin glycosyltransferase (CGTase) is an enzyme that produces cyclodextrins from starch by an intramolecular transglycosylation reaction. Cyclodextrins have been shown to have a number of applications in the food, cosmetic, pharmaceutical, and chemical industries. In the current study, the production of CGTase by Paenibacillus campinasensis strain H69-3 was examined in submerged and solid-state fermentations. P. campinasensis strain H69-3 was isolated from the soil, which grows at 45 C, and is a Gram-variable bacterium. Different substrate sources such as wheat bran, soybean bran, soybean extract, cassava solid residue, cassava starch, corn starch, and other combinations were used in the enzyme production. CGTase activity was highest in submerged fermentations with the greatest production observed at 48-72 h. The physical and chemical properties of CGTase were determined from the crude enzyme produced from submerged fermentations. The optimum temperature was found to be 70-75 degrees C, and the activity was stable at 55 degrees C for 1 h. The enzyme displayed two optimum pH values, 5.5 and 9.0 and was found to be stable between a pH of 4.5 and 11.0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of extracellular acid proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on haemoglobin pH 5.0 at 37 degreesC. The highest acid proteolytic activity (80 U/ml) was observed in culture medium containing glucose and gelatin at 1% (w/v) at 30 degreesC at the third day of incubation. Cultures developed in Vogel medium with glucose at 2% (w/v) showed at about 45% of proteolytic activity when compared to the cultures with 1% of the same sugar. The optimum pH of enzymatic activity was 2.0 and the enzyme was stable at pH values ranging from 2.0 to 4.0. The optimum temperature was 40 degreesC and the half-lives at 40, 45 and 50 degreesC were 30, 10 and 5 min, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rhizopus stolonifer was cultivated in wheat bran to produce a cellulase-free alkaline xylanase. The purified enzyme obtained after molecular exclusion chromatography in Sephacryl S-200 HR showed optimum temperature as 45 degrees C and hydrolysis pHs optima as pH 6.0 and 9.0. Xylanase presented higher Vmax at pH 9.0 (0.87 mu mol/mg protein) than at pH 6.0 and minor Km at pH 6.0 (7.42 mg/mL)than at pH 9.0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modelos matemáticos baseados no conceito de graus dia (thermal-time) e Ψw dia (hydrotime) podem ser usados para a elaboração de modelos mais gerais sobre a germinação e emergência de plântulas no campo, podendo ser uma importante ferramenta para estudos sobre a biologia de plantas daninhas e seu controle. Neste trabalho, avaliou-se a germinação de sementes de D. cordata em resposta ao potencial hídrico (Ψw), usando-se o modelo Ψw dia. Tanto a germinabilidade como a velocidade de germinação decresceram linearmente com a redução do Ψw, atingindo valores próximos a zero em -0.8 MPa. em temperatura ótima, a taxa de queda na germinação foi maior em comparação com as temperaturas sub- e supra-ótima. O Ψw base (Ψwb) mediano foi similar entre as temperaturas sub-ótima (19 ºC) e supra-ótima (32 ºC), mas foi maior (menos negativo) à temperatura ótima (25 ºC), mostrando que sementes de D. cordata são menos sensíveis à redução do potencial hídrico à 19 ºC do que à 25 ºC. O Ψw dia foi maior para sementes germinadas à temperatura sub-ótima do que à temperatura ótima, mostrando que a velocidade de germinação num dado potencial hídrico é maior em temperatura ótima. A quantidade de Ψw dia necessária para a germinação foi maior em temperatura supra-ótima do que em temperatura ótima, e menor em temperatura supra-ótima do que em sub-ótima. em geral, Ψw dia foi relativamente constante entre as diferentes sub-populações. O modelo de Ψw dia pode descrever bem o efeito do potencial hídrico sobre as curvas de germinação (porcentagem acumulada x tempo), especialmente às temperaturas sub-ótima e supra-ótima.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)