992 resultados para optimal stopping rule


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An opportunistic, rate-adaptive system exploits multi-user diversity by selecting the best node, which has the highest channel power gain, and adapting the data rate to selected node's channel gain. Since channel knowledge is local to a node, we propose using a distributed, low-feedback timer backoff scheme to select the best node. It uses a mapping that maps the channel gain, or, in general, a real-valued metric, to a timer value. The mapping is such that timers of nodes with higher metrics expire earlier. Our goal is to maximize the system throughput when rate adaptation is discrete, as is the case in practice. To improve throughput, we use a pragmatic selection policy, in which even a node other than the best node can be selected. We derive several novel, insightful results about the optimal mapping and develop an algorithm to compute it. These results bring out the inter-relationship between the discrete rate adaptation rule, optimal mapping, and selection policy. We also extensively benchmark the performance of the optimal mapping with several timer and opportunistic multiple access schemes considered in the literature, and demonstrate that the developed scheme is effective in many regimes of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the underlay mode of cognitive radio, secondary users can transmit when the primary is transmitting, but under tight interference constraints, which limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which require less hardware and yet exploit spatial diversity, help improve the secondary system performance. In this paper, we develop the optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gains of the channels from secondary transmit antenna to primary receiver and secondary transmit antenna to secondary receive antenna. The optimal rule is different from the several ad hoc rules that have been proposed in the literature. We also propose a closed-form, tractable variant of the optimal rule and analyze its SEP. Several results are presented to compare the performance of the closed-form rule with the ad hoc rules, and interesting inter-relationships among them are brought out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmit antenna selection (AS) is a popular, low hardware complexity technique that improves the performance of an underlay cognitive radio system, in which a secondary transmitter can transmit when the primary is on but under tight constraints on the interference it causes to the primary. The underlay interference constraint fundamentally changes the criterion used to select the antenna because the channel gains to the secondary and primary receivers must be both taken into account. We develop a novel and optimal joint AS and transmit power adaptation policy that minimizes a Chernoff upper bound on the symbol error probability (SEP) at the secondary receiver subject to an average transmit power constraint and an average primary interference constraint. Explicit expressions for the optimal antenna and power are provided in terms of the channel gains to the primary and secondary receivers. The SEP of the optimal policy is at least an order of magnitude lower than that achieved by several ad hoc selection rules proposed in the literature and even the optimal antenna selection rule for the case where the transmit power is either zero or a fixed value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider signal detection in nt × nr underdetermined MIMO (UD-MIMO) systems, where i) nt >; nr with a overload factor α = nt over nr >; 1, ii) nt symbols are transmitted per channel use through spatial multiplexing, and iii) nt, nr are large (in the range of tens). A low-complexity detection algorithm based on reactive tabu search is considered. A variable threshold based stopping criterion is proposed which offers near-optimal performance in large UD-MIMO systems at low complexities. A lower bound on the maximum likelihood (ML) bit error performance of large UD-MIMO systems is also obtained for comparison. The proposed algorithm is shown to achieve BER performance close to the ML lower bound within 0.6 dB at an uncoded BER of 10-2 in 16 × 8 V-BLAST UD-MIMO system with 4-QAM (32 bps/Hz). Similar near-ML performance results are shown for 32 × 16, 32 × 24 V-BLAST UD-MIMO with 4-QAM/16-QAM as well. A performance and complexity comparison between the proposed algorithm and the λ-generalized sphere decoder (λ-GSD) algorithm for UD-MIMO shows that the proposed algorithm achieves almost the same performance of λ-GSD but at a significantly lesser complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative relaying combined with selection has been extensively studied in the literature to improve the performance of interference-constrained secondary users in underlay cognitive radio (CR). We present a novel symbol error probability (SEP)-optimal amplify-and-forward relay selection rule for an average interference-constrained underlay CR system. A fundamental principle, which is unique to average interference-constrained underlay CR, that the proposed rule brings out is that the choice of the optimal relay is affected not just by the source-to-relay, relay-to-destination, and relay-to-primary receiver links, which are local to the relay, but also by the direct source-to-destination (SD) link, even though it is not local to any relay. We also propose a simpler, practically amenable variant of the optimal rule called the 1-bit rule, which requires just one bit of feedback about the SD link gain to the relays, and incurs a marginal performance loss relative to the optimal rule. We analyze its SEP and develop an insightful asymptotic SEP analysis. The proposed rules markedly outperform several ad hoc SD link-unaware rules proposed in the literature. They also generalize the interference-unconstrained and SD link-unaware optimal rules considered in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general framework for multi-criteria optimal design is presented which is well-suited for automated design of structural systems. A systematic computer-aided optimal design decision process is developed which allows the designer to rapidly evaluate and improve a proposed design by taking into account the major factors of interest related to different aspects such as design, construction, and operation.

The proposed optimal design process requires the selection of the most promising choice of design parameters taken from a large design space, based on an evaluation using specified criteria. The design parameters specify a particular design, and so they relate to member sizes, structural configuration, etc. The evaluation of the design uses performance parameters which may include structural response parameters, risks due to uncertain loads and modeling errors, construction and operating costs, etc. Preference functions are used to implement the design criteria in a "soft" form. These preference functions give a measure of the degree of satisfaction of each design criterion. The overall evaluation measure for a design is built up from the individual measures for each criterion through a preference combination rule. The goal of the optimal design process is to obtain a design that has the highest overall evaluation measure - an optimization problem.

Genetic algorithms are stochastic optimization methods that are based on evolutionary theory. They provide the exploration power necessary to explore high-dimensional search spaces to seek these optimal solutions. Two special genetic algorithms, hGA and vGA, are presented here for continuous and discrete optimization problems, respectively.

The methodology is demonstrated with several examples involving the design of truss and frame systems. These examples are solved by using the proposed hGA and vGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the resource allocation problem aimed at maximizing users' perception of quality in wireless channels with time-varying capacity. First of all, we model the subjective quality-aware scheduling problem in the framework of Markovian decision processes. Then, given that the obtaining of the optimal solution of this model is unachievable, we propose a simple scheduling index rule with closed-form expression by using a methodology based on Whittle approach. Finally, we analyze the performance of the achieved scheduling proposal in several relevant scenarios, concluding that it outperforms the most popular existing resource allocation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small failures should only disrupt a small part of a network. One way to do this is by marking the surrounding area as untrustworthy --- circumscribing the failure. This can be done with a distributed algorithm using hierarchical clustering and neighbor relations, and the resulting circumscription is near-optimal for convex failures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. A more general contingency model of optimal diet choice is developed, allowing for simultaneous searching and handling, which extends the theory to include grazing and browsing by large herbivores.</p><p>2. Foraging resolves into three modes: purely encounter-limited, purely handling-limited and mixed-process, in which either a handling-limited prey type is added to an encounter-limited diet, or the diet becomes handling-limited as it expands.</p><p>3. The purely encounter-limited diet is, in general, broader than that predicted by the conventional contingency model,</p><p>4. As the degree of simultaneity of searching and handling increases, the optimal diet expands to the point where it is handling-limited, at which point all inferior prey types are rejected,</p><p>5. Inclusion of a less profitable prey species is not necessarily independent of its encounter rate and the zero-one rule does not necessarily hold: some of the less profitable prey may be included in the optimal diet. This gives an optimal foraging explanation for herbivores' mixed diets.</p><p>6. Rules are shown for calculating the boundary between encounter-limited and handling-limited diets and for predicting the proportion of inferior prey to be included in a two-species diet,</p><p>7. The digestive rate model is modified to include simultaneous searching and handling, showing that the more they overlap, the more the predicted diet-breadth is likely to be reduced.</p>

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Association rule mining is an indispensable tool for discovering
insights from large databases and data warehouses.
The data in a warehouse being multi-dimensional, it is often
useful to mine rules over subsets of data defined by selections
over the dimensions. Such interactive rule mining
over multi-dimensional query windows is difficult since rule
mining is computationally expensive. Current methods using
pre-computation of frequent itemsets require counting
of some itemsets by revisiting the transaction database at
query time, which is very expensive. We develop a method
(RMW) that identifies the minimal set of itemsets to compute
and store for each cell, so that rule mining over any
query window may be performed without going back to the
transaction database. We give formal proofs that the set of
itemsets chosen by RMW is sufficient to answer any query
and also prove that it is the optimal set to be computed
for 1 dimensional queries. We demonstrate through an extensive
empirical evaluation that RMW achieves extremely
fast query response time compared to existing methods, with
only moderate overhead in pre-computation and storage

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we discuss the consensus problem for synchronous distributed systems with orderly crash failures. For a synchronous distributed system of n processes with up to t crash failures and f failures actually occur, first, we present a bivalency argument proof to solve the open problem of proving the lower bound, min (t + 1, f + 2) rounds, for early-stopping synchronous consensus with orderly crash failures, where t < n - 1. Then, we extend the system model with orderly crash failures to a new model in which a process is allowed to send multiple messages to the same destination process in a round and the failing processes still respect the order specified by the protocol in sending messages. For this new model, we present a uniform consensus protocol, in which all non-faulty processes always decide and stop immediately by the end of f + 1 rounds. We prove that the lower bound of early stopping protocols for both consensus and uniform consensus are f + 1 rounds under the new model, and our proposed protocol is optimal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in hardware and software in the past decade allow to capture, record and process fast data streams at a large scale. The research area of data stream mining has emerged as a consequence from these advances in order to cope with the real time analysis of potentially large and changing data streams. Examples of data streams include Google searches, credit card transactions, telemetric data and data of continuous chemical production processes. In some cases the data can be processed in batches by traditional data mining approaches. However, in some applications it is required to analyse the data in real time as soon as it is being captured. Such cases are for example if the data stream is infinite, fast changing, or simply too large in size to be stored. One of the most important data mining techniques on data streams is classification. This involves training the classifier on the data stream in real time and adapting it to concept drifts. Most data stream classifiers are based on decision trees. However, it is well known in the data mining community that there is no single optimal algorithm. An algorithm may work well on one or several datasets but badly on others. This paper introduces eRules, a new rule based adaptive classifier for data streams, based on an evolving set of Rules. eRules induces a set of rules that is constantly evaluated and adapted to changes in the data stream by adding new and removing old rules. It is different from the more popular decision tree based classifiers as it tends to leave data instances rather unclassified than forcing a classification that could be wrong. The ongoing development of eRules aims to improve its accuracy further through dynamic parameter setting which will also address the problem of changing feature domain values.