899 resultados para optical-lattice potential
Resumo:
We show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the shallow refractive index modulation, we develop a general approach for the calculation of the refraction angle change. The shape of a single waveguide crucially affects the refraction direction due to the appearance of a structural form factor in the expression for the density of emitted waves. For a lattice of scatterers, wave-soliton interference inside the lattice leads to the appearance of an additional geometric form factor. As a result, the soliton refraction is more pronounced for the disordered lattices than for the periodic ones.
Resumo:
In the framework of 1D Nonlinear Shrödinger Equation (NSE) we demonstrate how one can control the refractive angle of a fundamental soliton beam passing through an optical lattice, by adjusting either the shape of an individual waveguide or the relative positions of waveguides. Even for a single scatterer its shape has a nontrivial effect on the refraction direction. In the case of shallow modulation we provide an analytical description based of the effect on the soliton perturbation theory. When one considers a lattice of scatterers, there emanates an additional form factor in the radiation density (RD) of emitted waves referring to the wave-soliton beating and interference inside the lattice. We concentrate on the results for two cases: periodic lattice and disordered lattice of scattering shapes. © 2011 IEEE.
Resumo:
Ultra cold polar bosons in a disordered lattice potential, described by the extended Bose-Hubbard model, display a rich phase diagram. In the case of uniform random disorder one finds two insulating quantum phases-the Mott-insulator and the Haldane insulator-in addition to a superfluid and a Bose glass phase. In the case of a quasiperiodic potential, further phases are found, e.g. the incommensurate density wave, adiabatically connected to the Haldane insulator. For the case of weak random disorder we determine the phase boundaries using a perturbative bosonization approach. We then calculate the entanglement spectrum for both types of disorder, showing that it provides a good indication of the various phases.
Resumo:
We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique—thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metalfilm or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surfacethermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of ∼100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surfacethermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surfacepatterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.
Resumo:
We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.
Resumo:
Motivated by experiments on Josephson junction arrays, and cold atoms in an optical lattice in a synthetic magnetic field, we study the ``fully frustrated'' Bose-Hubbard model with half a magnetic flux quantum per plaquette. We obtain the phase diagram of this model on a two-leg ladder at integer filling via the density matrix renormalization group approach, complemented by Monte Carlo simulations on an effective classical XY model. The ground state at intermediate correlations is consistently shown to be a chiral Mott insulator (CMI) with a gap to all excitations and staggered loop currents which spontaneously break time-reversal symmetry. We characterize the CMI state as a vortex supersolid or an indirect exciton condensate, and discuss various experimental implications.
Resumo:
Motivated by experiments on Josephson junction arrays in a magnetic field and ultracold interacting atoms in an optical lattice in the presence of a ``synthetic'' orbital magnetic field, we study the ``fully frustrated'' Bose-Hubbard model and quantum XY model with half a flux quantum per lattice plaquette. Using Monte Carlo simulations and the density matrix renormalization group method, we show that these kinetically frustrated boson models admit three phases at integer filling: a weakly interacting chiral superfluid phase with staggered loop currents which spontaneously break time-reversal symmetry, a conventional Mott insulator at strong coupling, and a remarkable ``chiral Mott insulator'' (CMI) with staggered loop currents sandwiched between them at intermediate correlation. We discuss how the CMI state may be viewed as an exciton condensate or a vortex supersolid, study a Jastrow variational wave function which captures its correlations, present results for the boson momentum distribution across the phase diagram, and consider various experimental implications of our phase diagram. Finally, we consider generalizations to a staggered flux Bose-Hubbard model and a two-dimensional (2D) version of the CMI in weakly coupled ladders.
Resumo:
In the vicinity of a Feshbach resonance, a system of ultracold atoms in an optical lattice undergoes rich physical transformations which involve molecule formation and hopping of molecules on the lattice and thus goes beyond a single-band Hubbard model description. We explore theoretically the response of this system to a harmonic modulation of the magnetic field, and thus of the scattering length, across the Feshbach resonance. In the regime in which the single-band Hubbard model is still valid, we provide results for the doublon production as a function of the various parameters, such as frequency, amplitude, etc., that characterize the field modulation, as well as the lattice depth. The method may uncover a route towards the efficient creation of ultracold molecules and also provide an alternative to conventional lattice-depth-modulation spectroscopy.
Resumo:
We introduce a novel scheme for one-way quantum computing (QC) based on the use of information encoded qubits in an effective cluster state resource. With the correct encoding structure, we show that it is possible to protect the entangled resource from phase damping decoherence, where the effective cluster state can be described as residing in a decoherence-free subspace (DFS) of its supporting quantum system. One-way QC then requires either single or two-qubit adaptive measurements. As an example where this proposal can be realized, we describe an optical lattice set-up where the scheme provides robust quantum information processing. We also outline how one can adapt the model to provide protection from other types of decoherence.
Resumo:
Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. However, this entanglement may appear a mere mathematical artefact of the typical symmetrization procedure of many-body wavefunction in solid state physics. Here we show that this entanglement is physical, demonstrating the principles of its extraction from a typical solid-state system by scattering two particles off the system. Moreover, we show how to simulate this process using present day optical lattice technology. This demonstrates not only that entanglement exists in solids but also that it can be used for quantum information processing or as a test of Bell's inequalities.
Resumo:
This investigation comprises a comparison of experimental and theoretical dechanneling of MeV protons in copper single crystals. Dechanneling results when an ion's transverse energy increases to the value where the ion can undergo small impact parameter collisions with individual atoms. Depth dependent dechanneling rates were determined as functions of lattice temperature, ion beam energy and crystal axis orientation. Ion beam energies were IMeV and 2MeV,temperatures ranged from 35 K to 280 K and the experiment was carried out along both the (lOa) and <110) axes. Experimental data took the form of aligned and random Rutherford backscattered energy spectra. Dechanneling rates were extracted from these spectra using a single scattering theory that took explicit account of the different stopping powers experienced by channeled and dechanneled ions and also included a correction factor to take into account multiple scattering effects along the ion's trajectory. The assumption of statistical equilibrium and small angle scattering of the channeled ions allows a description of dechanneling in terms of the solution of a diffusion like equation which contains a so called diffusion function. The diffusion function is shown to be related to the increase in average transverse energy. Theoretical treatments of increase in average transverse energy due to collisions of projectiles with channel electrons and thermal perturbations in the lattice potential are reviewed. Using the diffusion equation and the electron density in the channel centre as a fitting parameter dechanneling rates are extracted. Excellent agreement between theory and experiment has been demonstrated. Electron densities determined in the fitting procedure appear to be realistic. The surface parameters show themselves to be good indicators of the quality of the crystal.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The existence of a dispersion-managed soliton in two-dimensional nonlinear Schrodinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.
Resumo:
With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America
Resumo:
Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model gauge theories, and ultimately in QCD.