977 resultados para optical probe


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the synthesis and photophysical properties of a star-shaped, novel, fluoranthene-tetraphenylethene (TFPE) conjugated luminogen, which exhibits aggregation-induced blue-shifted emission (AIBSE). The bulky fluoranthene units at the periphery prevent intramolecular rotation (IMR) of phenyl rings and induces a blueshift with enhanced emission. The AIBSE phenomenon was investigated by solvatochromic and temperature-dependent emission studies. Nanoaggregates of TFPE, formed by varying the water/THF ratio, were investigated by SEM and TEM and correlated with optical properties. The TFPE conjugate was found to be a promising fluorescent probe towards the detection of nitroaromatic compounds (NACs), especially for 2,4,6-trinitrophenol (PA) with high sensitivity and a high Stern-Volmer quenching constant. The study reveals that nanoaggregates of TFPE formed at 30 and 70% water in THF showed unprecedented sensitivity with detection limits of 0.8 and 0.5ppb, respectively. The nanoaggregates formed at water fractions of 30 and 70% exhibit high Stern-Volmer constants (K-sv=79998 and 51120m(-1), respectively) towards PA. Fluorescence quenching is ascribed to photoinduced electron transfer between TFPE and NACs with a static quenching mechanism. Test strips coated with TFPE luminogen demonstrate fast and ultra-low-level detection of PA for real-time field analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal noise arising from mechanical loss in high reflective dielectric coatings is a significant source of noise in precision optical measurements. In particular, Advanced LIGO, a large scale interferometer aiming to observed gravitational wave, is expected to be limited by coating thermal noise in the most sensitive region around 30–300 Hz. Various theoretical calculations for predicting coating Brownian noise have been proposed. However, due to the relatively limited knowledge of the coating material properties, an accurate approximation of the noise cannot be achieved. A testbed that can directly observed coating thermal noise close to Advanced LIGO band will serve as an indispensable tool to verify the calculations, study material properties of the coating, and estimate the detector’s performance.

This dissertation reports a setup that has sensitivity to observe wide band (10Hz to 1kHz) thermal noise from fused silica/tantala coating at room temperature from fixed-spacer Fabry–Perot cavities. Important fundamental noises and technical noises associated with the setup are discussed. The coating loss obtained from the measurement agrees with results reported in the literature. The setup serves as a testbed to study thermal noise in high reflective mirrors from different materials. One example is a heterostructure of AlxGa1−xAs (AlGaAs). An optimized design to minimize thermo–optic noise in the coating is proposed and discussed in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With one weak probe field and two strong pumping fields, superluminal optical solitons are formed in a lifetime-broadened four-level tripod atomic medium. With proper parameters, both dark and bright solitons can occur in the highly resonant medium. The corresponding group velocity of the solitons can be superluminal. Meanwhile, the conditions for superluminal solitons occurrence are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With one weak probe field and two strong pumping fields, the possibility of producing superluminal optical solitons is discussed in a lifetime-broadened inverted-Y atomic medium with proper parameters. As the group velocity of the solitons is larger than c, its occurrence can be controlled by modulating the intensities and the detunings of lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermodynamical fluctuations in temperature and position exist in every physical system, and show up as a fundamental noise limit whenever we choose to measure some quantity in a laboratory environment. Thermodynamical fluctuations in the position of the atoms in the dielectric coatings on the mirrors for optical cavities at the forefront of precision metrology (e.g., LIGO, the cavities which probe atomic transitions to define the second) are a current limiting noise source for these experiments, and anything which involves locking a laser to an optical cavity. These thermodynamic noise sources scale physical geometry of experiment, material properties (such as mechanical loss in our dielectric coatings), and temperature. The temperature scaling provides a natural motivation to move to lower temperatures, with a potential huge benefit for redesigning a room temperature experiment which is limited by thermal noise for cryogenic operation.

We design, build, and characterize a pair of linear Fabry-Perot cavities to explore limitations to ultra low noise laser stabilization experiments at cryogenic temperatures. We use silicon as the primary material for the cavity and mirrors, due to a zero crossing in its linear coefficient of thermal expansion (CTE) at 123 K, and other desirable material properties. We use silica tantala coatings, which are currently the best for making high finesse low noise cavities at room temperature. The material properties of these coating materials (which set the thermal noise levels) are relatively unknown at cryogenic temperatures, which motivates us to study them at these temperatures. We were not able to measure any thermal noise source with our experiment due to excess noise. In this work we analyze the design and performance of the cavities, and recommend a design shift from mid length cavities to short cavities in order to facilitate a direct measurement of cryogenic coating noise.

In addition, we measure the cavities (frequency dependent) photo-thermal response. This can help characterize thermooptic noise in the coatings, which is poorly understood at cryogenic temperatures. We also explore the feasibility of using the cavity to do macroscopic quantum optomechanics such as ground state cooling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the preparation and the characterization Of Y2O3 stabilized ZrO2 thin films produced by electric-beam evaporation method. The optical properties, microstructure, surface morphology and the residual stress of the deposited films were investigated by optical spectroscopy, X-ray diffraction (XRD), scanning probe microscope and optical interferometer. It is shown that the optical transmission spectra of all the YSZ thin films are similar with those of ZrO2 thin film, possessing high transparency in the visible and near-infrared regions. The refractive index of the samples decreases with increasing of Y2O3 content. The crystalline structure of pure ZrO2 films is a mixture of tetragonal phase and monoclinic phase, however, Y2O3 stabilized ZrO2 thin films only exhibit the cubic phase independently of how much the added Y2O3 content is. The surface morphology spectrum indicates that all thin films present a crystalline columnar texture with columnar grains perpendicular to the substrate and with a predominantly open microporosity. The residual stress of films transforms tensile from compressive with the increasing Of Y2O3 molar content, which corresponds to the evolutions of the structure and packing densities. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a novel technique whereby a mixture of cross-phase and cross-gain modulation effects in an SOA causes polarization rotation of a cw probe beam in the presence of a signal pulse, enabling the transmission of the probe through a polarizer to be controlled. The benefits of this approach are: 1) Very high extinction ratios present in the wavelength converted signal (>30 achieved); 2) A non-inverted wavelength converted signal, which is advantageous for chirp-compensation;2 3) A simple and stable experimental set-up, 4) Converted pulses which can be shaped to be faster than the input pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models for simulating Scanning Probe Microscopy (SPM) may serve as a reference point for validating experimental data and practice. Generally, simulations use a microscopic model of the sample-probe interaction based on a first-principles approach, or a geometric model of macroscopic distortions due to the probe geometry. Examples of the latter include use of neural networks, the Legendre Transform, and dilation/erosion transforms from mathematical morphology. Dilation and the Legendre Transform fall within a general family of functional transforms, which distort a function by imposing a convex solution.In earlier work, the authors proposed a generalized approach to modeling SPM using a hidden Markov model, wherein both the sample-probe interaction and probe geometry may be taken into account. We present a discussion of the hidden Markov model and its relationship to these convex functional transforms for simulating and restoring SPM images.©2009 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution time resolved transmittivity measurements on horizontally aligned free-standing multi-walled carbon nanotubes reveal a different electronic transient behavior from that of graphite. This difference is ascribed to the presence of discrete energy states in the multishell carbon nanotube electronic structure. Probe polarization dependence suggests that the optical transitions involve definite selection rules. The origin of these states is discussed and a rate equation model is proposed to rationalize our findings. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative, simple, compact and low cost approach for phase mapping based on the intrinsic modulation of an aperture Near Field Scanning Optical Microscope probe is analyzed and experimentally demonstrated. Several nanoscale silicon waveguides are phase-mapped using this approach, and the different modes of propagation are obtained via Fourier analysis. The obtained measured results are in good agreement with the effective indexes of the modes calculated by electromagnetic simulations. Owing to its simplicity and effectiveness, the demonstrated system is a potential candidate for integration with current near field systems for the characterization of nanophotonic components and devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative, simple, compact and low cost approach for phase mapping based on the intrinsic modulation of an aperture Near Field Scanning Optical Microscope probe is analyzed and experimentally demonstrated. Several nanoscale silicon waveguides are phase-mapped using this approach, and the different modes of propagation are obtained via Fourier analysis. The obtained measured results are in good agreement with the effective indexes of the modes calculated by electromagnetic simulations. Owing to its simplicity and effectiveness, the demonstrated system is a potential candidate for integration with current near field systems for the characterization of nanophotonic components and devices. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative, simple compact and low cost approach for phase mapping based on the intrinsic modulation of a Near Field Scanning Optical Microscope probe is analyzed and experimentally demonstrated. © OSA/ CLEO 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a wavelength coded optical timedomain reflectometry based on optical heterodyne technique. In this scheme, the probe and reference optical pulses have different wavelengths. This enables optical heterodyne detection to be used to improve the system performances significantly. We demonstrate a spatial resolution of 2.5 m within a range of 60 km in weak-reflection signal detection and direct observation of Brillouin scattering over a long optical fiber, suggesting online fiber sensing possible. The principle of wavelength coding is applicable to other systems like lidar and radar to increase receiver sensitivity and simplify system structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.