971 resultados para online handwritten patterns


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The value of Question Answering (Q&A) communities is dependent on members of the community finding the questions they are most willing and able to answer. This can be difficult in communities with a high volume of questions. Much previous has work attempted to address this problem by recommending questions similar to those already answered. However, this approach disregards the question selection behaviour of the answers and how it is affected by factors such as question recency and reputation. In this paper, we identify the parameters that correlate with such a behaviour by analysing the users' answering patterns in a Q&A community. We then generate a model to predict which question a user is most likely to answer next. We train Learning to Rank (LTR) models to predict question selections using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success, and highlight the particular features that inuence users' question selections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter investigates the resistance by institutional actors in ambiguous supply chain environments for online grocery provision. Recent studies have shown that significant shifts in urban geographies are increasing consumers' expectations of online retail provision. However, at the same time there is also growing evidence that the collaborative practice in online grocery provision within the urban supply chains is resisted. That these trends are found despite growing demand of online provision highlights both the difficulty of bringing geographically dispersed supply partners together and the problems associated with operating within and across ambiguous environments. Drawing upon twenty-nine in-depth interviews with a range of institutional actors, including retail, logistics, and urban planning experts within an urban metropolis in an emerging market, we detail the different ways that collaboration is resisted in online retail provision. Several different patterns of resistance were identified in (non-) collaboration notably, ideological, functional, regulatory and spatial. © 2011, IGI Global. C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Az online marketingről sokan elsősorban az interneten fellelhető új kommunikációs eszközökre asszociálnak, ugyanakkor elfeledkeznek arról, hogy az új médium mind az árazás, mind értékesítési csatornapolitika területén számos új lehetőséget, és egyben kihívást is jelent a vállalatok számára. Online környezetben egészen más fogyasztói magatartásmintákat követhetnek a potenciális ügyfelek, vásárlók, amely eltérő megközelítéseket igényelnek a cégek részéről. Kérdés azonban, hogy a sok különbözőség ellenére lehetséges-e az új csatorna integrációja az eddig működtetett értékesítési csatornákkal, egyáltalán kell-e integrálni? Az tanulmány megkísérli bemutatni azokat a stratégiai irányokat, amelyeket a többcsatornás értékesítési rendszereket működtető vállalatok követhetnek, és azonosítani az ezekkel együtt járó problémákat. / === / Online marketing is widely viewed as a new communication tool on the internet, and many times it is neglected that this channel provides a range of opportunities and, at the same time, challenges regarding pricing and sales for companies. In the online environment consumers can show quite different behaviour patterns from the ones in the offline context and it can require different approach from companies. The diverse characteristics of the internet, however, raise the question if it is possible to integrate the new channel with the existing ones? Moreover, is it necessary at all? The paper attempts to determine and present the possible strategic directions that a company can follow when applying multi-channel marketing, and identify the barriers to implement them successfully.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper aims to identify actual media audiences of different mass- and non-mass media types through identifying those audience clusters consuming not different but differentiable media mixes. A major concern of the study is to highlight the transformation of mass media audiences when technology, digitalization and participation behaviors are able to reshape traditional audience forms and media diets, which may directly affect the traditional media value chain and in turn the thinking and decision making of media managers. Through such a kaleidoscope the authors examined media use and consumption patterns using an online self-reported questionnaire. They developed different media consumer clusters as well as media consumption mixes. Based on the results of the study the authors can state that internet use is today’s main base of media consumption, and as such it is becoming the real mass media, replacing television. However this “new” media has a completely different structure, being more fragmented with smaller audience reach. At the same time, television is keeping its audience. However, there are emerging segments self-reporting non- or light television viewing. This is how the question of the viewer-television relation among different television viewer clusters evolves. At the same time only gaming exhibited demographic differentiation of audiences based on gender.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reflects a research project on the influence of online news media (from print, radio, and televised outlets) on disaster response. Coverage on the October 2010 Indonesian tsunami and earthquake was gathered from 17 sources from October 26 through November 30. This data was analyzed quantitatively with respect to coverage intensity over time and among outlets. Qualitative analyses were also conducted using keywords and value scale that assessed the degree of positivity or negativity associated with that keyword in the context of accountability. Results yielded insights into the influence of online media on actors' assumption of accountability and quality of response. It also provided information as to the optimal time window in which advocates and disaster management specialists can best present recommendations to improve policy and raise awareness. Coverage of outlets was analyzed individually, in groups, and as a whole, in order to discern behavior patterns for a better understanding of media interdependency. This project produced analytical insights but is primarily intended as a prototype for more refined and extensive research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Fluid resuscitation is a cornerstone of intensive care treatment, yet there is a lack of agreement on how various types of fluids should be used in critically ill patients with different disease states. Therefore, our goal was to investigate the practice patterns of fluid utilization for resuscitation of adult patients in intensive care units (ICUs) within the USA. METHODS: We conducted a cross-sectional online survey of 502 physicians practicing in medical and surgical ICUs. Survey questions were designed to assess clinical decision-making processes for 3 types of patients who need volume expansion: (1) not bleeding and not septic, (2) bleeding but not septic, (3) requiring resuscitation for sepsis. First-choice fluid used in fluid boluses for these 3 patient types was requested from the respondents. Descriptive statistics were performed using a Kruskal-Wallis test to evaluate differences among the physician groups. Follow-up tests, including t tests, were conducted to evaluate differences between ICU types, hospital settings, and bolus volume. RESULTS: Fluid resuscitation varied with respect to preferences for the factors to determine volume status and preferences for fluid types. The 3 most frequently preferred volume indicators were blood pressure, urine output, and central venous pressure. Regardless of the patient type, the most preferred fluid type was crystalloid, followed by 5 % albumin and then 6 % hydroxyethyl starches (HES) 450/0.70 and 6 % HES 600/0.75. Surprisingly, up to 10 % of physicians still chose HES as the first choice of fluid for resuscitation in sepsis. The clinical specialty and the practice setting of the treating physicians also influenced fluid choices. CONCLUSIONS: Practice patterns of fluid resuscitation varied in the USA, depending on patient characteristics, clinical specialties, and practice settings of the treating physicians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selected publications are focused on the relations between users, eGames and the educational context, and how they interact together, so that both learning and user performance are improved through feedback provision. A key part of this analysis is the identification of behavioural, anthropological patterns, so that users can be clustered based on their actions, and the steps taken in the system (e.g. social network, online community, or virtual campus). In doing so, we can analyse large data sets of information made by a broad user sample,which will provide more accurate statistical reports and readings. Furthermore, this research is focused on how users can be clustered based on individual and group behaviour, so that a personalized support through feedback is provided, and the personal learning process is improved as well as the group interaction. We take inputs from every person and from the group they belong to, cluster the contributions, find behavioural patterns and provide personalized feedback to the individual and the group, based on personal and group findings. And we do all this in the context of educational games integrated in learning communities and learning management systems. To carry out this research we design a set of research questions along the 10-year published work presented in this thesis. We ask if the users can be clustered together based on the inputs provided by them and their groups; if and how these data are useful to improve the learner performance and the group interaction; if and how feedback becomes a useful tool for such pedagogical goal; if and how eGames become a powerful context to deploy the pedagogical methodology and the various research methods and activities that make use of that feedback to encourage learning and interaction; if and how a game design and a learning design must be defined and implemented to achieve these objectives, and to facilitate the productive authoring and integration of eGames in pedagogical contexts and frameworks. We conclude that educational games are a resourceful tool to provide a user experience towards a better personalized learning performance and an enhance group interaction along the way. To do so, eGames, while integrated in an educational context, must follow a specific set of user and technical requirements, so that the playful context supports the pedagogical model underneath. We also conclude that, while playing, users can be clustered based on their personal behaviour and interaction with others, thanks to the pattern identification. Based on this information, a set of recommendations are provided Digital Anthropology and educational eGames 6 /216 to the user and the group in the form of personalized feedback, timely managed for an optimum impact on learning performance and group interaction level. In this research, Digital Anthropology is introduced as a concept at a late stage to provide a backbone across various academic fields including: Social Science, Cognitive Science, Behavioural Science, Educational games and, of course, Technology-enhance learning. Although just recently described as an evolution of traditional anthropology, this approach to digital behaviour and social structure facilitates the understanding amongst fields and a comprehensive view towards a combined approach. This research takes forward the already existing work and published research onusers and eGames for learning, and turns the focus onto the next step — the clustering of users based on their behaviour and offering proper, personalized feedback to the user based on that clustering, rather than just on isolated inputs from every user. Indeed, this pattern recognition in the described context of eGames in educational contexts, and towards the presented aim of personalized counselling to the user and the group through feedback, is something that has not been accomplished before.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clustering algorithms, pattern mining techniques and associated quality metrics emerged as reliable methods for modeling learners’ performance, comprehension and interaction in given educational scenarios. The specificity of available data such as missing values, extreme values or outliers, creates a challenge to extract significant user models from an educational perspective. In this paper we introduce a pattern detection mechanism with-in our data analytics tool based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni index quality metrics. Experiments performed on a dataset obtained from our online e-learning platform show that the extracted interaction patterns were representative in classifying learners. Furthermore, the performed monitoring activities created a strong basis for generating automatic feedback to learners in terms of their course participation, while relying on their previous performance. In addition, our analysis introduces automatic triggers that highlight learners who will potentially fail the course, enabling tutors to take timely actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Athletic groin pain (AGP) is prevalent in sports involving repeated accelerations, decelerations, kicking and change-of-direction movements. Clinical and radiological examinations lack the ability to assess pathomechanics of AGP, but three-dimensional biomechanical movement analysis may be an important innovation. Aim: The primary aim was to describe and analyse movements used by patients with AGP during a maximum effort change-of-direction task. The secondary aim was to determine if specific anatomical diagnoses were related to a distinct movement strategy. Methods: 322 athletes with a current symptom of chronic AGP participated. Structured and standardised clinical assessments and radiological examinations were performed on all participants. Additionally, each participant performed multiple repetitions of a planned maximum effort change-of-direction task during which whole body kinematics were recorded. Kinematic and kinetic data were examined using continuous waveform analysis techniques in combination with a subgroup design that used gap statistic and hierarchical clustering. Results: Three subgroups (clusters) were identified. Kinematic and kinetic measures of the clusters differed strongly in patterns observed in thorax, pelvis, hip, knee and ankle. Cluster 1 (40%) was characterised by increased ankle eversion, external rotation and knee internal rotation and greater knee work. Cluster 2 (15%) was characterised by increased hip flexion, pelvis contralateral drop, thorax tilt and increased hip work. Cluster 3 (45%) was characterised by high ankle dorsiflexion, thorax contralateral drop, ankle work and prolonged ground contact time. No correlation was observed between movement clusters and clinically palpated location of the participant's pain. Conclusions: We identified three distinct movement strategies among athletes with long-standing groin pain during a maximum effort change-of-direction task. These movement strategies were not related to clinical assessment findings but highlighted targets for rehabilitation in response to possible propagative mechanisms. Trial registration number NCT02437942, pre results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patterns of cognitive change over micro-longitudinal timescales (i.e., ranging from hours to days) are associated with a wide range of age-related health and functional outcomes. However, practical issues with conducting high-frequency assessments make investigations of micro-longitudinal cognition costly and burdensome to run. One way of addressing this is to develop cognitive assessments that can be performed by older adults, in their own homes, without a researcher being present. Here, we address the question of whether reliable and valid cognitive data can be collected over micro-longitudinal timescales using unsupervised cognitive tests.In study 1, 48 older adults completed two touchscreen cognitive tests, on three occasions, in controlled conditions, alongside a battery of standard tests of cognitive functions. In study 2, 40 older adults completed the same two computerized tasks on multiple occasions, over three separate week-long periods, in their own homes, without a researcher present. Here, the tasks were incorporated into a wider touchscreen system (Novel Assessment of Nutrition and Ageing (NANA)) developed to assess multiple domains of health and behavior. Standard tests of cognitive function were also administered prior to participants using the NANA system.Performance on the two “NANA” cognitive tasks showed convergent validity with, and similar levels of reliability to, the standard cognitive battery in both studies. Completion and accuracy rates were also very high. These results show that reliable and valid cognitive data can be collected from older adults using unsupervised computerized tests, thus affording new opportunities for the investigation of cognitive function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, tool support is addressed for the combined disciplines of Model-based testing and performance testing. Model-based testing (MBT) utilizes abstract behavioral models to automate test generation, thus decreasing time and cost of test creation. MBT is a functional testing technique, thereby focusing on output, behavior, and functionality. Performance testing, however, is non-functional and is concerned with responsiveness and stability under various load conditions. MBPeT (Model-Based Performance evaluation Tool) is one such tool which utilizes probabilistic models, representing dynamic real-world user behavior patterns, to generate synthetic workload against a System Under Test and in turn carry out performance analysis based on key performance indicators (KPI). Developed at Åbo Akademi University, the MBPeT tool is currently comprised of a downloadable command-line based tool as well as a graphical user interface. The goal of this thesis project is two-fold: 1) to extend the existing MBPeT tool by deploying it as a web-based application, thereby removing the requirement of local installation, and 2) to design a user interface for this web application which will add new user interaction paradigms to the existing feature set of the tool. All phases of the MBPeT process will be realized via this single web deployment location including probabilistic model creation, test configurations, test session execution against a SUT with real-time monitoring of user configurable metric, and final test report generation and display. This web application (MBPeT Dashboard) is implemented with the Java programming language on top of the Vaadin framework for rich internet application development. The Vaadin framework handles the complicated web communications processes and front-end technologies, freeing developers to implement the business logic as well as the user interface in pure Java. A number of experiments are run in a case study environment to validate the functionality of the newly developed Dashboard application as well as the scalability of the solution implemented in handling multiple concurrent users. The results support a successful solution with regards to the functional and performance criteria defined, while improvements and optimizations are suggested to increase both of these factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a microscopic setting, humans behave in rich and unexpected ways. In a macroscopic setting, however, distinctive patterns of group behavior emerge, leading statistical physicists to search for an underlying mechanism. The aim of this dissertation is to analyze the macroscopic patterns of competing ideas in order to discern the mechanics of how group opinions form at the microscopic level. First, we explore the competition of answers in online Q&A (question and answer) boards. We find that a simple individual-level model can capture important features of user behavior, especially as the number of answers to a question grows. Our model further suggests that the wisdom of crowds may be constrained by information overload, in which users are unable to thoroughly evaluate each answer and therefore tend to use heuristics to pick what they believe is the best answer. Next, we explore models of opinion spread among voters to explain observed universal statistical patterns such as rescaled vote distributions and logarithmic vote correlations. We introduce a simple model that can explain both properties, as well as why it takes so long for large groups to reach consensus. An important feature of the model that facilitates agreement with data is that individuals become more stubborn (unwilling to change their opinion) over time. Finally, we explore potential underlying mechanisms for opinion formation in juries, by comparing data to various types of models. We find that different null hypotheses in which jurors do not interact when reaching a decision are in strong disagreement with data compared to a simple interaction model. These findings provide conceptual and mechanistic support for previous work that has found mutual influence can play a large role in group decisions. In addition, by matching our models to data, we are able to infer the time scales over which individuals change their opinions for different jury contexts. We find that these values increase as a function of the trial time, suggesting that jurors and judicial panels exhibit a kind of stubbornness similar to what we include in our model of voting behavior.