966 resultados para online classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements The authors thank the crews, fishers, and scientists who conducted the various surveys from which data were obtained. This work was supported by the Government of South Georgia and South Sandwich Islands. Additional logistical support provided by The South Atlantic Environmental Research Institute, with thanks to Paul Brickle. PF receives funding from the MASTS pooling initiative (TheMarine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. SF is funded by the Natural Environment Research Council, and data were provided from the British Antarctic Survey Ecosystems Long-term Monitoring and Surveys programme as part of the BAS Polar Science for Planet Earth Programme. The authors also thank the anonymous referees for their helpful suggestions on an earlier version of this manuscript.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diplomacy often finds itself reduced to actions centred on states. However, after the Cold War, international relations and diplomacy have expanded with different actors growing into significant roles, particularly in the increase of diplomatic relations in the context of sport. The classification and significance of other actors remains under-researched in relation to sport, with literature focusing more on the growth of new and varying practices of diplomacy. This analysis contends that there is a need to interrogate fundamental components of modern diplomacy—with the actor being the focus—more specifically the classification of sports organisations in diplomacy. It is relevant as a more accurate understanding of sports organisations will contribute to how diplomatic studies can analyse and evaluate modern diplomacy within the context of sport. The International Olympic Committee is the actor used to illustrate how problematic classifications currently in the academic literature translate into weak and reduced analysis and evaluation of its role and significance in diplomacy. As counterpoint, this analysis proposes an analytical framework of socio-legal theory that harnesses legal regulation as a benchmark to classify an actor’s capacity within a society. In consequence, the IOC is as an active and significant contributor to the ever expanding and complex diplomatic environment and wider society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dados suplementares associados com este artigo disponíveis na versão online em: http://dx.doi.org/10.1016/j.marpol.2016.06.021

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes the Robot Vision challenge, a competition that evaluates solutions for the visual place classification problem. Since its origin, this challenge has been proposed as a common benchmark where worldwide proposals are measured using a common overall score. Each new edition of the competition introduced novelties, both for the type of input data and subobjectives of the challenge. All the techniques used by the participants have been gathered up and published to make it accessible for future developments. The legacy of the Robot Vision challenge includes data sets, benchmarking techniques, and a wide experience in the place classification research that is reflected in this article.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classification schemes undergo revision. However, in a networked environment revisions can be used to add dimensionality to classification. This dimensionality can be used to help explain conceptual warrant, explain the shift from disciplinary to multidisciplinary knowledge production, and as a component method of domain analysis. Further, subject ontogeny might be used in cooperative networked projects like digital preservation, online access tools, and interoperability frameworks.