950 resultados para office buildings
Resumo:
This report presents the results of a study on indoor environment quality (IEQ) and occupant productivity in two buildings that are owned and Occupied by City of Melbourne, and located next to each other in Central Melbourne, Council House 1 (CH1) and Council House 2 (CH2). The impact of a range of relevant IEQ and other parameters on health, wellbeing and productivity of occupants is assessed. The before-and-after case study has demonstrated that the productivity of office building occupants can potentially be enhanced through good building design, and provision of a high quality, healthy, comfortable and functional interior environment, that takes account of basic occupant needs. It has shown that good indoor environment quality is a necessary pre-requisite for enhanced productivity in office buildings, but that broader aspects of overall building and interior design are also important.
Resumo:
There has been increasing reliance on mechanical heating, ventilation and air-conditioning (HVAC) systems to achieve thermal comfort in office buildings. The use of universal standards for thermal comfort adopted in air-conditioned spaces often results in a large disparity between mean daily external summer temperatures and temperatures experienced indoors. The extensive overuse of air-conditioning in warm climates not only isolates us from the vagaries of the external environment, but is generally dependent on non-renewable energy. A pilot study conducted at the Queensland University of Technology (QUT) involved altering the thermostat set-points to two or three degrees above the normal summer setting in two air-conditioned buildings during the subtropical summer. This paper presents the findings of the research that led to the formulation of the test study. The findings of the test study are printed in the companion paper DES 72: Adjusting Building Thermastats for Environmental Gains – a Pilot Study.
Resumo:
Building insulation is often used to reduce the conduction heat transfer through building envelope. With a higher level of insulation (or a greater R-value), the less the conduction heat would transfer through building envelope. In this paper, using building computer simulation techniques, the effects of building insulation levels on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that depending on the types of buildings and the climates of buildings located, increasing the level of building insulation will not always bring benefits in energy saving and thermal comfort, particularly for internal-load dominated office buildings located in temperate/tropical climates. The possible implication of building insulation in face of global warming has also been examined. Compared with the influence of insulation on building thermal performance, the influence on building energy use is relatively small.
Resumo:
In recent years, the problems resulting from unsustainable subdivision development have become significant problems in the Bangkok Metropolitan Region (BMR), Thailand. Numbers of government departments and agencies have tried to eliminate the problems by introducing the rating tools to encourage the higher sustainability levels of subdivision development in BMR, such as the Environmental Impact Assessment Monitoring Award (EIA-MA) and the Thai’s Rating for Energy and Environmental Sustainability of New construction and major renovation (TREES-NC). However, the EIA-MA has included the neighbourhood designs in the assessment criteria, but this requirement applies to large projects only. Meanwhile, TREES-NC has focused only on large scale buildings such as condominiums, office buildings, and is not specific for subdivision neighbourhood designs. Recently, the new rating tool named “Rating for Subdivision Neighbourhood Sustainability Design (RSNSD)” has been developed. Therefore, the validation process of RSNSD is still required. This paper aims to validate the new rating tool for subdivision neighbourhood design in BMR. The RSNSD has been validated by applying the rating tool to eight case study subdivisions. The result of RSNSD by data generated through surveying subdivisions will be compared to the existing results from the EIA-MA. The selected cases include of one “Excellent Award”, two “Very Good Award”, and five non-rated subdivision developments. This paper expects to prove the credibility of RSNSD before introducing to the real subdivision development practises. The RSNSD could be useful to encourage higher sustainability subdivision design level, and then protect the problems from further subdivision development in BMR.
Resumo:
This paper explores how the design of creative clusters as a key strategy in promoting the urban creative economy has played out in Shanghai. Creative Clusters in Europe and North America context have emerged ‘organically’. They developed spontaneously in those cities which went through a period of post-industrial decline. Creative Industries grew up in these cities as part of a new urban economy in the wake of old manufacturing industries. Artists and creative entrepreneurs moved into vacant warehouses and factories and began the trend of ‘creative clusters’. Such clusters facilitate the transfer of tacit knowledge through informal learning, the efficient sourcing of skills and information, competition, collaboration and learning, inter-cluster trading and networking. This new urban phenomenon was soon targeted by local economic development policy in charge of re-generating and re-structuralizing industrial activities in cities. Rising interest from real estate and local economic development has led to more and more planned creative clusters. In the aim of catching up with the world’s creative cities, Shanghai has planned over 100 creative clusters since 2005. Along with these officially designed creative clusters, there are organically emerged creative clusters that are much smaller in scale and much more informal in terms of the management. And they emerged originally in old residential areas just outside the CBD and expand to include French concession the most sort after residential area at the edge of CBD. More recently, office buildings within CBD are made available for creative usages. From fringe to CBD, these organic creative clusters provide crucial evidences for the design of creative clusters. This paper will be organized in 2 parts. In the first part, I will present a case study of 8 ‘official’ clusters (title granted by local govenrment) in Shanghai through which I am hoping to develop some key indicators of the success/failure of creative clusters as well as link them with their physical, social and operational efficacies. In the second part, a variety of ‘alternative’ clusters (organicly formed clusters most of which are not recongnized by the government) supplies with us the possibilities of rethinking the so-called ‘cluster development strategy’ in terms of what kind of spaces are appropriate for use by clusters? Who should manage them and in what format? And ultimately what are their relationship with the rest of the city should be defined?
Resumo:
Strong regulatory pressure on environmental issues and the improved public awareness will continue to influence the market demand for sustainable housing in the coming years. Despite this potential, the voluntary up-take rate of sustainable practices is not as high as expected within the new built housing industry. This is in contrast to the influx of emerging building technologies, new materials and innovative designs as seen in office buildings and exemplar homes built worldwide. One possible reason for this is that key stakeholders such as developers, builders and consumers do not fully understand and appreciate the tangible and mutual benefits of sustainability in their professional and business activities. This situation warrants the study of a multifaceted strategy that integrates the needs of multiple stakeholders. This research investigates multiple factors that affect key stakeholder’s benefits in sustainable housing implementation. Drawing insights from a quantitative study on a questionnaire survey and a qualitative study of in-depth interviews with key stakeholders in the Australian housing industry, 11 critical factors of driving market demand for sustainable housing were unearthed. Their inter-relationships were identified with the aid of Interpretive Structural Modelling. The study concludes with a hierarchical model that amalgamates the strategies for the decision making of key stakeholders.
Resumo:
Sustainability issues in built environment have attracted an increasingly level of attention from both the general public and the industry. As a result, a number of green building assessment tools have been developed such as the Leadership in Energy and Environmental Design (LEED) and the BRE Environmental Assessment Method (BREEAM), etc. This paper critically reviewed the assessment tools developed in Australian context, i.e. the Green Star rating tools developed by the Green Building Council of Australia. A particular focus is given to the recent developments of these assessment tools. The results showed that the office buildings take the biggest share of Green Star rated buildings. Similarly, sustainable building assessments seem to be more performance oriented which focuses on the operation stage of buildings. In addition, stakeholder engagement during the decision making process is encouraged. These findings provide useful references to the development of next generation of sustainable building assessment tools.
Resumo:
High Dynamic Range (HDR) imaging was used to collect luminance information at workstations in 2 open-plan office buildings in Queensland, Australia: one lit by skylights, vertical windows and electric light, and another by skylights and electric light. This paper compares illuminance and luminance data collected in these offices with occupant feedback to evaluate these open-plan environments based on available and emerging metrics for visual comfort and glare. This study highlights issues of daylighting quality and measurement specific to open plan spaces. The results demonstrate that overhead glare is a serious threat to user acceptance of skylights, and that electric and daylight integration and controls have a major impact on the perception of daylighting quality. With regards to measurement of visual comfort it was found that the Daylight Glare Probability (DGP) gave poor agreement with occupant reports of discomfort glare in open-plan spaces with skylights, and the CIE Glare Index (CGI) gave the best agreement. Horizontal and vertical illuminances gave no indication of visual comfort in these spaces.
Resumo:
Strong regulatory pressure and rising public awareness on environmental issues will continue to influence the market demand for sustainable housing for years to come. Despite this potential, the voluntary uptake rate of sustainable practices is not as high as expected within the new built housing industry. This is in contrast to the influx of emerging building technologies, new materials and innovative designs as showcased in office buildings and exemplar homes worldwide. One of the possible reasons for this under-performance is that key stakeholders such as developers, builders and consumers do not fully understand and appreciate the related challenges, risks and opportunities of pursuing sustainability. Therefore, in their professional and business activities, they may not be able to see the tangible and mutual benefits that sustainable housing may bring. This research investigates the multiple challenges to achieving benefits (CABs) from sustainable housing development, and links these factors to the characteristics of key stakeholders in the housing supply chain. It begins with a comparative survey study among seven stakeholder groups in the Australian housing industry, in order to examine the importance and interrelationships of CABs. In-depth interviews then further explore the survey findings with a focus on stakeholder diversity, which leads to the identification of 12 critical mutual-benefit factors and their interrelationship. Based on such a platform, a mutual-benefit framework is developed with the aid of Interpretive Structure Modelling, to identify the patterns of stakeholder benefit materialisation, suggest the priority of critical factors and provide related stakeholder-specific action guidelines for sustainable housing implementation. The study concludes with a case study of two real-life housing projects to test the application of the mutual-benefit framework for improvement. This framework will lead to a shared value of sustainability among stakeholders and improved stakeholder collaboration, which in turn help to break the "circle of blame" for the current under-performance of sustainable housing implementation.
Resumo:
This study explored the dynamic performance of an innovative Hybrid Composite Floor Plate System (HCFPS), composed of Polyurethane (PU) core, outer layers of Glass–fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Experimental testing included heel impact and walking tests for 3200 mm span HCFPS panels. FE models of the HCFPS were developed using the FE program ABAQUS and validated with experimental results. HCFPS is a light-weight high frequency floor system with excellent damping ratio of 5% (bare floor) due to the central PU core. Parametric studies were conducted using the validated FE models to investigate the dynamic response of the HCFPS and to identify characteristics that influence acceleration response under human induced vibration in service. This vibration performance was compared with recommended acceptable perceptibility limits. The findings of this study show that HCFPS can be used in residential and office buildings as a light-weight floor system, which does not exceed the perceptible thresholds due to human induced vibrations.
Resumo:
There are three distinct categories of air environment to be considered in this chapter. These are as follows: (1) The “ambient” or general outdoors atmosphere to which the members of the population are exposed when they venture out of their homes or offices in industrial, urban or rural environments. (2) Indoor air environments, which occur in buildings such as homes, schools, restaurants, public hospitals and office buildings. This category does not cover factories or workplaces which are otherwise subjected to the provisions of various occupational health standards. (3) Workplace atmospheres, which occur in a variety of industries or factories and for which there are numerous atmospheric concentration limits (or exposure standards) promulgated by appropriate bodies or organisations. Since 2009 setting concentration limits for atmospheric contaminants has been administered by Safe Work Australia. A fourth category of air environment which falls outside this chapter is that which is related to upper atmospheric research, global atmospheric effects and concomitant areas of inquiry and/or debate. Such areas include “greenhouse” gas emissions, ozone depletion, and related matters of atmospheric chemistry and physics. This category is not referred to again in this chapter.
Resumo:
Melbourne-based manufacturer Muller Industries Australia’s new cooling system saves 80 per cent of the average water usage in commercial office buildings that use water-based cooling towers.
Resumo:
In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings.
Resumo:
This article investigates how to use UK probabilistic climate-change projections (UKCP09) in rigorous building energy analysis. Two office buildings (deep plan and shallow plan) are used as case studies to demonstrate the application of UKCP09. Three different methods for reducing the computational demands are explored: statistical reduction (Finkelstein-Schafer [F-S] statistics), simplification using degree-day theory and the use of metamodels. The first method, which is based on an established technique, can be used as reference because it provides the most accurate information. However, it is necessary to automatically choose weather files based on F-S statistic by using computer programming language because thousands of weather files created from UKCP09 weather generator need to be processed. A combination of the second (degree-day theory) and third method (metamodels) requires only a relatively small number of simulation runs, but still provides valuable information to further implement the uncertainty and sensitivity analyses. The article also demonstrates how grid computing can be used to speed up the calculation for many independent EnergyPlus models by harnessing the processing power of idle desktop computers. © 2011 International Building Performance Simulation Association (IBPSA).