957 resultados para occlusal loads
Resumo:
Background Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Methods Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Findings The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+ 2,+1,− 2 relative to the apex, (p < 0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Interpretation While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning.
Resumo:
In the design of a windmill using a sail type rotor, there arose a need to protect the structure against damage due to overloading in excessive winds. This need was satisfied by using a novel form of load limiter in the support system of sails of the windmill. This note will analyze the load capacity wires so that one can design wires for any specified limit load.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.
Resumo:
The aim of this study was to evaluate the feasibility of pit and fissure sealants and the effectiveness of the two sealant methods applied in every-day practice in public dental health care in Finland. Two sealant methods were evaluated according to their effectiveness in preventing dentin caries and sealant retention. Application time with these sealant methods was compared. The survival rate of sealed first and second molars was followed for nine and 13 year periods, respectively. Caries risk evaluation and observed increased caries risk were the basis for considering sealant application. A questionnaire, sent to all public dental health centers in Finland, monitored the attitudes of the dental profession towards sealant application and explored the current policies used as well as changes noted in the sealant application protocol. DMFT (Decayed, Missing or Filled Teeth) index values collected from the health centers were evaluated. The difference in caries rate between two methods investigated was highly significant. When compared to the glass ionomer sealant method (GIC), the effectiveness of the resin-based method (RB) in preventing dentin caries was 74% and the rate difference 3%. The relative risk for RB-sealed surfaces vs. GIC-sealed surfaces of having detectable dentin caries was 0.3 (95% CI 0.12, 0.57). The retention rate of sealants was higher with RB than GIC (P<0.001). Application of RB sealant material was less time-consuming than application of GIC sealant. Occlusal dentin caries lesions were found in 4% and proximal caries in less than 2% of sealed teeth. The majority of respondents reported application of sealants on a systematic basis along with caries-risk evaluation. Those health centers sealing over suspected or detected enamel caries had lower average DMFT index values (1.0) when compared to DMFT values (1.2) of health centers applying sealants by alternative criteria. It is concluded that the RB sealant method is more effective than the GIC sealant method in preventing dentin caries. Sealant maintenance may increase the costs of a sealant program. Occlusal caries management may be improved if the applied sealant policies are changed towards an interceptive approach i.e. applying the sealants over detected or suspected enamel caries lesions instead of sealing sound teeth in a preventive manner.
Resumo:
In this paper, we consider the optimization of the cross-section profile of a cantilever beam under deformation-dependent loads. Such loads are encountered in plants and trees, cereal crop plants such as wheat and corn in particular. The wind loads acting on the grain-bearing spike of a wheat stalk vary with the orientation of the spike as the stalk bends; this bending and the ensuing change in orientation depend on the deformation of the plant under the same load.The uprooting of the wheat stalks under wind loads is an unresolved problem in genetically modified dwarf wheat stalks. Although it was thought that the dwarf varieties would acquire increased resistance to uprooting, it was found that the dwarf wheat plants selectively decreased the Young's modulus in order to be compliant. The motivation of this study is to investigate why wheat plants prefer compliant stems. We analyze this by seeking an optimal shape of the wheat plant's stem, which is modeled as a cantilever beam, by taking the large deflection of the stem into account with the help of co-rotational finite element beam modeling. The criteria considered here include minimum moment at the fixed ground support, adequate stiffness and strength, and the volume of material. The result reported here is an example of flexibility, rather than stiffness, leading to increased strength.
Resumo:
The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.
Resumo:
The nature of microcracks formed in concrete under repeated uniaxial compressive loads are investigated by experiments on prismatic specimens. The distribution and orientation of cracks formed are studied by optical microscopic techniques. The basic failure mechanism of concrete at the phenomenological and internal structural level are examined by the formation and propagation of cracks. The tests have indicated that local tensile failures constitute the dominant mode of fracture, with the bond cracks forming the major percentage of the total magnitude of cracks. Significant differences were observed in the proportion of bond cracks formed under static and repeated load systems.
Resumo:
n many parts of the world, the goal of electricity supply industries is always the introduction of competition and a lowering of the average consumer price. Because of this it has become much more important to be able to determine which generators are supplying a particular load, how much use each generator is making of a transmission line and what is generator's contribution to the system losses. In this paper a case study on generator contributions towards loads and transmission flows are illustrated with an equivalent 11-bus system, a part of Indian Southern Grid, based on the concepts of circuit flow directions, for normal and network contingency conditions.
Resumo:
Yhteenveto: Järvien happamoituminen Suomessa: Alueellinen vedenlaatu ja kriittinen kuormitus
Resumo:
Considering the method of broad-band coupling a series resonant RLC load to a resistive source using a uniform quarter-wave transmission-line inverter, it is shown that the 3-dB bandwidth of the network insertion loss reckoned with respect to a 0-dB loss attains a maximum for a particular value of the center frequency insertion loss in the range 0-3 dB. The center frequency Ioss and the corresponding value of the maximum 3-dB bandwidth are calculated for various loads and the results graphically presented.
Resumo:
A new analytical model has been suggested for the hysteretic behaviour of beams. The model can be directly used in a response analysis without bothering to locate the precise point where the unloading commences. The model can efficiently simulate several types of realistic softening hysteretic loops. This is demonstrated by computing the response of cantilever beams under sinusoidal and random loadings. Results are presented in the form of graphs for maximum deflection, bending moment and shear
Resumo:
The material presented in this paper summarizes the progress that has been made in the analysis, design, and testing of concrete structures. The material is summarized in the following documents: 1. Part I - Containment Design Criteria and Loading Combinations - J.D. Stevenson (Stevenson and Associates, Cleveland, Ohio, USA) 2. Part II - Reinforced and Prestressed Concrete Behavior - J. Eibl and M. Curbach (Karlsruhe University, Karlsruhe, Germany) 3. Part III - Concrete Containment Analysis, Design and Related Testing - T.E. Johnson and M.A. Daye (Bechtel Power Corporation, Gaithersburg, Maryland USA) 4. Part IV - Impact and Impulse Loading and Response Prediction - J.D. Riera (School of Engineering - UFRGS, Porto Alegre, RS, Brazil) 5. Part V - Metal Containments and Liner Plate Systems - N.J. Krutzik (Siemens AG, Offenbach Am Main, Germany) 6. Part VI - Prestressed Reactor Vessel Design, Testing and Analysis - J. Nemet (Austrian Research Center, Seibersdorf, Austria) and K.T.S. Iyengar (Indian Institute of Science, Bangalore, India).