971 resultados para nuclear octupole deformation model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present investigation was to determine the orientation dependence of substructure characteristics in an austenitic Fe−30wt%Ni model alloy subjected to hot plane strain compression. Deformation was carried out at a temperature of 950 °C using a strain rate of 10 s−1 to equivalent strain levels of approximately 0.2, 0.4, 0.6 and 0.8. The specimens obtained were analysed using a fully automatic electron backscatter diffraction technique. The crystallographic texture was characterized for all the strain levels studied and the subgrain structure was quantified in detail at a strain of 0.4. The substructure characteristics displayed pronounced orientation dependence. The major texture components, namely the copper, S, brass, Goss and rotated Goss, generally contained one or two prominent families of parallel larger-angle extended subboundaries, the traces of which on the longitudinal viewing plane appeared systematically aligned along the {111} slip plane traces, bounding long microbands subdivided into slightly elongated subgrains by short lower-angle transverse subboundaries. Relatively rare cube-orientated grains displayed pronounced subdivision into coarse deformation bands containing large, low-misorientated subgrains. The misorientation vectors across subboundaries largely showed a tendency to cluster around the sample transverse direction. Apart from the rotated Goss texture component, the stored energy levels for the remaining components were principally consistent with the corresponding Taylor factor values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study compared two potential model alloys, 304 stainless steel and Ni-30wt.%Fe, to study the behaviour of austenite during the thermo-mechanical processing of steel. The deformation behaviour as well as the textural and microstructural evolution was characterised in detail over a wide range of deformation conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during thermomechanical processing of metallic materials requires knowledge of the internal state variable data, such as microstructure, texture, and dislocation substructure characteristics, over a range of processing conditions. This is a particular problem for steels, where transformation of the austenite to a variety of transformation products eradicates the hot deformed microstructure. This article reports on a model Fe-30wt% Ni-based alloy, which retains a stable austenitic structure at room temperature, and has, therefore, been used to model the development of austenite microstructure during hot deformation of conventional low carbon-manganese steels. It also provides an excellent model alloy system for microalloy additions. Evolution of the microstructure and crystallographic texture was characterized in detail using optical microscopy, X-ray diffraction (XRD), SEM, EBSD, and TEM. The dislocation substructure has been quantified as a function of crystallographic texture component for a variety of deformation conditions for the Fe-30% Ni-based alloy. An extension to this study, as the use of a microalloyed Fe-30% Ni-Nb alloy in which the strain induced precipitation mechanism was studied directly. The work has shown that precipitation can occur at a much finer scale and higher number density than hitherto considered, but that pipe diffusion leads to rapid coarsening. The implications of this for model development are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A partial differential equation is developed that captures the evolution of key characteristics of tensile twinning in magnesium base alloys. The objective is to provide a framework for ascertaining the effects of hardening – due to grain refinement, precipitation and dislocation substructure – on twin volume fraction, thickness and length. The model is developed with the help of observations made on alloy AZ31. It is shown that it is necessary to consider the nucleation of twins at locations where neighbouring twins impinge on the grain boundary. The model provides a reasonable approximation for the role of grain size on twinning. It predicts a period of low apparent work hardening following yielding and shows that this should be more extensive for finer grain sizes, in agreement with experiment. Finally, some predictions are made on the effect of changing the resistance to twinning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanical behaviour of Fe-18Mn-0.6C-1Al (wt%) TWIP steel was modelled in the temperature range from room temperature to 400°C. The proposed constitutive model was based on the Kocks-Mecking-Estrin (KME) model. The model parameters were determined using extensive experimental measurements of the physical parameters such as the dislocation mean free path and the volume fraction of twinned grains. More than 100 grains with a total area of ~300μm2 were examined at different strain levels over the entire stress-strain curve. Uniaxial tensile deformation of the TWIP steel was modelled for different deformation temperatures using a modelling approach which considers two distinct populations of grains: twinned and twin-free ones. A key point of the work was a meticulous experimental determination of the evolution of the volume fraction of twinned grains during uniaxial tensile deformation. This information was implemented in a phase-mixture model that yielded a very good agreement with the experimental tensile behaviour for the tested range of deformation temperatures. © 2014 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of deformation parameters on the flow behavior of a Ti6Al4V alloy has been studied to understand the deformation mechanisms during hot compression. Cylindrical samples with partially equiaxed grains were deformed in the α+β phase region at different thermo-mechanical conditions. To develop components with tailored properties, the physically based Estrin and Mecking (EM) model for the work hardening/dynamic recovery combined with the Avrami equation for dynamic recrystallization was used to predict the flow stress at varying process conditions. The EM model revealed good predictability up to the peak strain, however, at strain rates below 0.01s-1, a higher B value was observed due to the reduced density of dislocation tangles. In contrast, the flow softening model revealed higher value of constants a and b at high strain rates due to the reduction in the volume fraction of dynamic recrystallization and larger peak strain. The predicted flow stress using the combined EM+Avrami model revealed good agreement with the measured flow stress resulted in very low average absolute relative error value. The microstructural analysis of the samples suggests the formation of coarse equiaxed grains together with the increased β phase fraction at low strain rate leads to a higher flow softening.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work has investigated the evolution of microbands (MBs) and their interaction with strain-induced NbC precipitates during uniaxial compression of a model austenitic Fe-30Ni-Nb steel at 925 °C. The (1 1 0) fibre grains, both without and with copious amounts of precipitates, contained up to large strains crystallographic MBs aligned close to the highly stressed {1 1 1} slip planes having large Schmid factors. The MBs thus maintained their crystallographic character during straining, through continuously rearranging themselves, and did not follow the macroscopically imposed rigid body rotation. During double-pass deformation, fine NbC particles formed at short inter-pass holding remained strongly pinned at small reloading strains and appeared to be dragged by rearranging MB walls. With increasing reloading strain, the fine precipitates became progressively released from the above walls. During reloading after increased holding time, the coarsened particles tended with their increased size to become increasingly detached from the MB walls already at a small strain. The precipitate-free MB wall segments rearranged during straining to maintain their crystallographic alignment, while the detached precipitates followed the sample shape change and rotated towards the compression plane. The MB wall rearrangement generally occurred through cooperative migration of the corresponding dislocation networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quark-model descriptions of the nucleon-nucleon interaction contain two main ingredients, a quark-exchange mechanism for the short-range repulsion and meson exchanges for the medium- and long-range parts of the interaction. We point out the special role played by higher partial waves, and in particular the (1)F(3), as a very sensitive probe for the meson-exchange pan employed in these interaction models. In particular, we show that the presently available models fail to provide a reasonable description of higher partial waves and indicate the reasons for this shortcoming.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamical properties of the U-238-U-238 system at the classical turning point, specifically the distance of closest approach, the relative orientations of the nuclei, and deformations have been studied at the sub-Coulomb energy of E(lab) = 6.07 MeV/nucleon using a classical dynamical model with a variable moment of inertia. Probability of favorable alignment for anomalous positron-electron pair emission through vacuum decay is calculated. The calculated small favorable alignment probability value of 0.116 is found to be enhanced by about 16% in comparison with the results of a similar study using a fixed moment of inertia as well as the results from a semiquantal calculation reported earlier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The quark-meson-coupling model is used to study droplet formation from the liquid-gas phase transition in cold asymmetric nuclear matter. The critical density and proton fraction for the phase transition are determined in the mean field approximation. Droplet properties are calculated in the Thomas-Fermi approximation. The electromagnetic field is explicitly included and its effects on droplet properties are studied. The results are compared with the ones obtained with the NL1 parametrization of the non-linear Walecka model. © 2000 Elsevier Science B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A renormalization-group calculation of the temperature-dependent nuclear spin relaxation rate for a magnetic impurity in a metallic host is reported. The calculation follows a simplified procedure, which produces accurate rates in the low-temperature Fermi-liquid regime, although yielding only qualitatively reliable results at higher temperatures. In all cases considered, as the temperature T diminishes, the rates peak before decaying linearly to zero in the Fermi-liquid range. For T → 0, the results agree very well with Shiba's expression relating the low-temperature coefficient of the relaxation rate to the squared zero-temperature susceptibility. In the Kondo limit, the enhanced susceptibility associated with the Kondo resonance produces a very sharp peak in the relaxation rate near the Kondo temperature. © 1991.