991 resultados para np charts
Resumo:
Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonyl phenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Increasing rates of obesity and heart disease are compromising quality of life for a growing number of people. There is much research linking adult disease with the growth and development both in utero and during the first year of life. The pig is an ideal model for studying the origins of developmental programming. The objective of this paper was to construct percentile growth curves for the pig for use in biomedical studies. The body weight (BIN) of pigs was recorded from birth to 150 days of age and their crown-to-rump length was measured over the neonatal period to enable the ponderal index (Pl; kg/m(3)) to be calculated. Data were normalised and percentile curves were constructed using Cole's lambda-mu-sigma (LMS) method for BW and PI. The construction of these percentile charts for use in biomedical research will allow a more detailed and precise tracking of growth and development of individual pigs under experimental conditions.
Resumo:
Semantic Analysis is a business analysis method designed to capture system requirements. While these requirements may be represented as text, the method also advocates the use of Ontology Charts to formally denote the system's required roles, relationships and forms of communication. Following model driven engineering techniques, Ontology Charts can be transformed to temporal Database schemas, class diagrams and component diagrams, which can then be used to produce software systems. A nice property of these transformations is that resulting system design models lend themselves to complicated extensions that do not require changes to the design models. For example, resulting databases can be extended with new types of data without the need to modify the database schema of the legacy system. Semantic Analysis is not widely used in software engineering, so there is a lack of experts in the field and no design patterns are available. This make it difficult for the analysts to pass organizational knowledge to the engineers. This study describes an implementation that is readily usable by engineers, which includes an automated technique that can produce a prototype from an Ontology Chart. The use of such tools should enable developers to make use of Semantic Analysis with minimal expertise of ontologies and MDA.
Resumo:
The general assumption under which the (X) over bar chart is designed is that the process mean has a constant in-control value. However, there are situations in which the process mean wanders. When it wanders according to a first-order autoregressive (AR (1)) model, a complex approach involving Markov chains and integral equation methods is used to evaluate the properties of the (X) over bar chart. In this paper, we propose the use of a pure Markov chain approach to study the performance of the (X) over bar chart. The performance of the chat (X) over bar with variable parameters and the (X) over bar with double sampling are compared. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this article, we propose new control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The traditional tools used for this purpose are the T (2) and the |S| charts. However, these charts have two drawbacks: (1) the T (2) and the |S| statistics are not easy to compute, and (2) after a signal, they do not distinguish the variable affected by the assignable cause. As an alternative to (1), we propose the MVMAX chart, which only requires the computation of sample means and sample variances. As an alternative to (2), we propose the joint use of two charts based on the non-central chi-square statistic (NCS statistic), named as the NCS charts. Once the NCS charts signal, the user can immediately identify the out-of-control variable. In general, the synthetic MVMAX chart is faster than the NCS charts and the joint T (2) and |S| charts in signaling processes disturbances.
Resumo:
In this article, we consider the T(2) chart with double sampling to control bivariate processes (BDS chart). During the first stage of the sampling, n(1) items of the sample are inspected and two quality characteristics (x; y) are measured. If the Hotelling statistic T(1)(2) for the mean vector of (x; y) is less than w, the sampling is interrupted. If the Hotelling statistic T(1)(2) is greater than CL(1), where CL(1) > w, the control chart signals an out-of-control condition. If w < T(1)(2) <= CL(1), the sampling goes on to the second stage, where the remaining n(2) items of the sample are inspected and T(2)(2) for the mean vector of the whole sample is computed. During the second stage of the sampling, the control chart signals an out-of-control condition when the statistic T(2)(2) is larger than CL(2). A comparative study shows that the BDS chart detects process disturbances faster than the standard bivariate T(2) chart and the adaptive bivariate T(2) charts with variable sample size and/or variable sampling interval.
Resumo:
We propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample variances of the two quality characteristics, in short VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is its faster detection of process changes and its better diagnostic feature; that is, with the VMAX statistic it is easier to identify the out-of-control variable. We study the double sampling (DS) and the exponentially weighted moving average (EWMA) charts based on the VMAX statistic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, three single-control charts are proposed to monitor individual observations of a bivariate Poisson process. The specified false-alarm risk, their control limits, and ARLs were determined to compare their performances for different types and sizes of shifts. In most of the cases, the single charts presented better performance rather than two separate control charts ( one for each quality characteristic). A numerical example illustrates the proposed control charts.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)