933 resultados para nonlinear regression analysis
Resumo:
Introduction: This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic eases. Methods: The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus data-bases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Results: Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P < .001), acute apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Conclusions: Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections.
Resumo:
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objective: To evaluate suicide rates and trends in Sao Paulo by sex, age-strata, and methods. Methods: Data was collected from State registry from 1996 to 2009. Population was estimated using the National Census. We utilized joinpoint regression analysis to explore temporal trends. We also evaluated marital status, ethnicity, birthplace and methods for suicide. Results: In the period analyzed, 6,002 suicides were accrued with a rate of 4.6 per 100,000 (7.5 in men and 2.0 in women); the male-to-female ratio was around 3.7. Trends for men presented a significant decline of 5.3% per year from 1996 to 2002, and a significant increase of 2.5% from 2002 onwards. Women did not present significant changes. For men, the elderly (> 65 years) had a significant reduction of 2.3% per year, while younger men (25-44 years) presented a significant increase of 8.6% from 2004 onwards. Women did not present significant trend changes according to age. Leading suicide methods were hanging and poisoning for men and women, respectively. Other analyses showed an increased suicide risk ratio for singles and foreigners. Conclusions: Specific epidemiological trends for suicide in the city of Sao Paulo that warrant further investigation were identified. High-risk groups - such as immigrants - could benefit from targeted strategies of suicide prevention.
Resumo:
OBJECTIVE: To evaluate suicide rates and trends in São Paulo by sex, age-strata, and methods. METHODS: Data was collected from State registry from 1996 to 2009. Population was estimated using the National Census. We utilized joinpoint regression analysis to explore temporal trends. We also evaluated marital status, ethnicity, birthplace and methods for suicide. RESULTS: In the period analyzed, 6,002 suicides were accrued with a rate of 4.6 per 100,000 (7.5 in men and 2.0 in women); the male-to-female ratio was around 3.7. Trends for men presented a significant decline of 5.3% per year from 1996 to 2002, and a significant increase of 2.5% from 2002 onwards. Women did not present significant changes. For men, the elderly (> 65 years) had a significant reduction of 2.3% per year, while younger men (25-44 years) presented a significant increase of 8.6% from 2004 onwards. Women did not present significant trend changes according to age. Leading suicide methods were hanging and poisoning for men and women, respectively. Other analyses showed an increased suicide risk ratio for singles and foreigners. CONCLUSIONS: Specific epidemiological trends for suicide in the city of São Paulo that warrant further investigation were identified. High-risk groups - such as immigrants - could benefit from targeted strategies of suicide prevention.
Resumo:
The Receiver Operating Characteristic (ROC) curve is a prominent tool for characterizing the accuracy of continuous diagnostic test. To account for factors that might invluence the test accuracy, various ROC regression methods have been proposed. However, as in any regression analysis, when the assumed models do not fit the data well, these methods may render invalid and misleading results. To date practical model checking techniques suitable for validating existing ROC regression models are not yet available. In this paper, we develop cumulative residual based procedures to graphically and numerically assess the goodness-of-fit for some commonly used ROC regression models, and show how specific components of these models can be examined within this framework. We derive asymptotic null distributions for the residual process and discuss resampling procedures to approximate these distributions in practice. We illustrate our methods with a dataset from the Cystic Fibrosis registry.
Resumo:
A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.
Resumo:
The history of the logistic function since its introduction in 1838 is reviewed, and the logistic model for a polychotomous response variable is presented with a discussion of the assumptions involved in its derivation and use. Following this, the maximum likelihood estimators for the model parameters are derived along with a Newton-Raphson iterative procedure for evaluation. A rigorous mathematical derivation of the limiting distribution of the maximum likelihood estimators is then presented using a characteristic function approach. An appendix with theorems on the asymptotic normality of sample sums when the observations are not identically distributed, with proofs, supports the presentation on asymptotic properties of the maximum likelihood estimators. Finally, two applications of the model are presented using data from the Hypertension Detection and Follow-up Program, a prospective, population-based, randomized trial of treatment for hypertension. The first application compares the risk of five-year mortality from cardiovascular causes with that from noncardiovascular causes; the second application compares risk factors for fatal or nonfatal coronary heart disease with those for fatal or nonfatal stroke. ^
Resumo:
Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^
Resumo:
Hepatitis B virus (HBV) is a significant cause of liver diseases and related complications worldwide. Both injecting and non-injecting drug users are at increased risk of contracting HBV infection. Scientific evidence suggests that drug users have subnormal response to HBV vaccination and the seroprotection rates are lower than that in the general population; potentially due to vaccine factors, host factors, or both. The purpose of this systematic review is to examine the rates of seroprotection following HBV vaccination in drug using populations and to conduct a meta-analysis to identify the factors associated with varying seroprotection rates. Seroprotection is defined as developing an anti-HBs antibody level of ≥ 10 mIU/ml after receiving the HBV vaccine. Original research articles were searched using online databases and reference lists of shortlisted articles. HBV vaccine intervention studies reporting seroprotection rates in drug users and published in English language during or after 1989 were eligible. Out of 235 citations reviewed, 11 studies were included in this review. The reported seroprotection rates ranged from 54.5 – 97.1%. Combination vaccine (HAV and HBV) (Risk ratio 12.91, 95% CI 2.98-55.86, p = 0.003), measurement of anti-HBs with microparticle immunoassay (Risk ratio 3.46, 95% CI 1.11-10.81, p = 0.035) and anti-HBs antibody measurement at 2 months after the last HBV vaccine dose (RR 4.11, 95% CI 1.55-10.89, p = 0.009) were significantly associated with higher seroprotection rates. Although statistically nonsignificant, the variables mean age>30 years, higher prevalence of anti-HBc antibody and anti-HIV antibody in the sample population, and current drug use (not in drug rehabilitation treatment) were strongly associated with decreased seroprotection rates. Proportion of injecting drug users, vaccine dose and accelerated vaccine schedule were not predictors of heterogeneity across studies. Studies examined in this review were significantly heterogeneous (Q = 180.850, p = 0.000) and factors identified should be considered when comparing immune response across studies. The combination vaccine showed promising results; however, its effectiveness compared to standard HBV vaccine needs to be examined systematically. Immune response in DUs can possibly be improved by the use of bivalent vaccines, booster doses, and improving vaccine completion rates through integrated public programs and incentives.^
Resumo:
The severe accidents suffered by bridges during recent earthquake show that more careful analysis are needed to guarantee their behaviour. In particular simplified non-linear analysis could be useful to bridge the gap between theoretical research and practical applications. This paper presents one of those simplified methods that can be applied for first designs or to retrofitting of groups of bridges.
Resumo:
In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. In addition to recording TOD, the cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also identified for use as the independent variables in the regression analysis. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajectory parame- ters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowledge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace.