938 resultados para nonlinear gravity waves
Resumo:
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.
Resumo:
In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness d(1), and lower layer thickness d(2), instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehautes plot for free surface waves if water depth ratio r = d(1)/d(2) approaches to infinity and the upper layer water density rho(1) to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of sigma = (rho(2) - rho(1))/rho(2) -> 1.0 and r > 1.0. In the end, several figures of the validity ranges for various interfacial wave theories in the two-layer fluid are given and compared with the results for surface waves.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.
Resumo:
The generation of internal gravity waves by barotropic tidal flow passing over a two-dimensional topography is investigated. Rather than calculating the conversion of tidal energy, this study focuses on delineating the geometric characteristics of the spatial structure of the resulting internal wave fields (i.e., the configurations of the internal beams and their horizontal projections) which have usually been ignored. it is found that the various possible wave types can be demarcated by three characteristic frequencies: the tidal frequency, wo; the buoyancy frequency, N; and the vertical component of the Coriolis vector or earth's rotation.f. When different possibilities arising from the sequence of these frequencies are considered, there occur 12 kinds of wave structures in the full 3D space in contrast to the 5 kinds identified by the 2D theory. The constant wave phase lines may form as ellipses or hyperbolic lines on the horizontal plane, provided the buoyancy frequency is greater or less than the tidal frequency. The effect that stems from the consideration of the basic flow is also found, which not only serves as the reason for the occurrence of higtter harmonics but also increases the wave strength in the direction of basic flow. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.
Resumo:
This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio epsilon, represented by the ratio of amplitude to depth, and the dispersion ratio mu, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(mu(2)). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.
Resumo:
Acoustic Gravity waves (AGW) play an important role in balancing the atmospheric energy and momentum budget. Propagation of gravity wave in the atmosphere is one of the important factors of changing middle and upper atmosphere and ionosphere. The purpose of this dissertation is to study the propagation of gravity wave in a compression atmosphere whit means of numerical simulation and to analyze the response of middle and upper atmosphere to pulse disturbance from lower atmosphere. This work begins with the establishment of 2-D fully nonlinear compressible atmospheric dynamic model in polar coordinate, which is used ton numerically study gravity wave propagation. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. We also simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model and analyze the data we obtained by using Fourier Transform (FT), Short-time Fourier Transform (STFT) and Empirical Mode Decomposition (EMD) method which is an important part of Hilbert-Huang Transform (HHT). The research content is summarized in the following: 1. By using a two-dimensional full-implicit-continuous-Eulerian (FICE) scheme and taking the atmospheric basic motion equations as the governing equations, a numerical model for nonlinear propagation of acoustic gravity wave disturbance in two-dimensional polar coordinates is solved. 2. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. Results of numerical simulation show that the acoustic gravity wave packets propagate steadily upward and keep its shape well after several periods. 3. We simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model, and obtain the distribution of a certain physical quantity in time and space from earth’s surface to 300km above. The results reveal that the response of ionosphere occurs at a large horizontal distance from the source and the disturbance becomes greater with increasing of height. The situation when the direction of the background wind is opposite to or the same as the direction of disturbed velocity of gravity-wave is studied. The results show that gravity wave propagating against winds is easier than those propagating along winds and the background wind can accelerate gravity wave propagation. Just upon the source, an acoustic wave component with period of 6 min can be found. These images of simulation are similar to observations of the total electron content (TEC) disturbances caused by the great Sumatra-Andaman earthquake on December 26 in 2004. 4. Using the EMD method the disturbed velocity data of a certain physical quantity in time and space can be decomposed into a series of intrinsic mode function (IMF) and a trend mode respectively. The results of EMD reveal impact of the gravity wave frequency under the background winds.
Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic, and hot constituents
Resumo:
Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron-positron mix, together with a two-ion mix or together with adiabatic ions and cold dust (both of either charge sign), to name but some of the possible plasma compositions.
Resumo:
The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose characteristics are investigated parametrically, focusing on the effect of superthermality of electrons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength. A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance) via a reductive perturbation method. The parametric role of superthermality, positron content, ion pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures is investigated. Following Allen and Rowlands [J. Plasma Phys. 53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to oblique perturbations, and have analytically traced the dependence of the instability growth rate on superthermality and ion pressure anisotropy.
Resumo:
A new method is developed for approximating the scattering of linear surface gravity waves on water of varying quiescent depth in two dimensions. A conformal mapping of the fluid domain onto a uniform rectangular strip transforms steep and discontinuous bed profiles into relatively slowly varying, smooth functions in the transformed free-surface condition. By analogy with the mild-slope approach used extensively in unmapped domains, an approximate solution of the transformed problem is sought in the form of a modulated propagating wave which is determined by solving a second-order ordinary differential equation. This can be achieved numerically, but an analytic solution in the form of a rapidly convergent infinite series is also derived and provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude and slow variations in the bedform that are excluded from the mapping procedure are incorporated in the approximation by a straightforward extension of the theory. The error incurred in using the method is established by means of a rigorous numerical investigation and it is found that remarkably accurate estimates of the scattered wave amplitudes are given for a wide range of bedforms and frequencies.
Resumo:
The annual and interannual variability of idealized, linear, equatorial waves in the lower stratosphere is investigated using the temperature and velocity fields from the ECMWF 15-year re-analysis dataset. Peak Kelvin wave activity occurs during solstice seasons at 100 hPa, during December-February at 70 hPa and in the easterly to westerly quasi-biennial oscillation (QBO) phase transition at 50 hPa. Peak Rossby-gravity wave activity occurs during equinox seasons at 100 hPa, during June-August/September-November at 70 hPa and in the westerly to easterly QBO phase transition at 50 hPa. Although neglect of wind shear means that the results for inertio-gravity waves are likely to be less accurate, they are still qualitatively reasonable and an annual cycle is observed in these waves at 100 hPa and 70 hPa. Inertio-gravity waves with n = 1 are correlated with the QBO at 50 hPa, but the eastward inertio-gravity n = 0 wave is not, due to its very fast vertical group velocity in all background winds. The relative importance of different wave types in driving the QBO at 50 hPa is also discussed. The strongest acceleration appears to be provided by the Kelvin wave while the acceleration provided by the Rossby-gravity wave is negligible. Of the higher-frequency waves, the westward inertio-gravity n = 1 wave appears able to contribute more to the acceleration of the 50 hPa mean zonal wind than the eastward inertio-gravity n = 1 wave.
Resumo:
Wavenumber-frequency spectral analysis and linear wave theory are combined in a novel method to quantitatively estimate equatorial wave activity in the tropical lower stratosphere. The method requires temperature and velocity observations that are regularly spaced in latitude, longitude and time; it is therefore applied to the ECMWF 15-year re-analysis dataset (ERA-15). Signals consistent with idealized Kelvin and Rossby-gravity waves are found at wavenumbers and frequencies in agreement with previous studies. When averaged over 1981-93, the Kelvin wave explains approximately 1 K-2 of temperature variance on the equator at 100 hPa, while the Rossby-gravity wave explains approximately 1 m(2)s(-2) of meridional wind variance. Some inertio-gravity wave and equatorial Rossby wave signals are also found; however the resolution of ERA-15 is not sufficient for the method to provide an accurate climatology of waves with high meridional structure.
Resumo:
We study weak solutions for a class of free-boundary problems which includes as a special case the classical problem of travelling gravity waves on water of finite depth. We show that such problems are equivalent to problems in fixed domains and study the regularity of their solutions. We also prove that in very general situations the free boundary is necessarily the graph of a function.
Resumo:
This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.