943 resultados para non-viral vector


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gene therapy has the potential to provide safe and targeted therapies for a variety of diseases. A range of intracellular gene delivery vehicles have been proposed for this purpose. Non-viral vectors are a particularly attractive option and among them cationic peptides have emerged as promising candidates. For the pharmaceutical formulation and application to clinical studies it is necessary to quantify the amount of pDNA condensed with the delivery system. There is a severe deficiency in this area, thus far no methods have been reported specifically for pDNA condensed with cationic peptide to form nanoparticles. The current study seeks to address this and describes the evaluation of a range of disruption agents to extract DNA from nanoparticles formed by condensation with cationic fusogenic peptides RALA and KALA. Only proteinase K exhibited efficient and reproducible results and compatibility with the PicoGreen reagent based quantification assay. Thus we report for the first time a simple and reliable method that can quantify the pDNA content in pDNA cationic peptide nanoparticles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of a non-viral gene delivery vehicle capable of delivering and releasing a functional nucleic acid cargo intracellularly remains a formidable challenge. For systemic gene therapy to be successful a delivery vehicle is required that protects the nucleic acid cargo from enzymatic degradation, extravasates from the vasculature, traverses the cell membrane, disrupts the endosomal vesicles and unloads the cargo at its destination site, namely the nucleus for the purposes of gene delivery. This manuscript reports the extensive investigation of a novel amphipathic peptide composed of repeating RALA units capable of overcoming the biological barriers to gene delivery both in vitro and in vivo. Our data demonstrates the spontaneous self-assembly of cationic DNA-loaded nanoparticles when the peptide is complexed with pDNA. Nanoparticles were < 100 nm, were stable in the presence of serum and were fusogenic in nature, with increased peptide α-helicity at a lower pH. Nanoparticles proved to be non-cytotoxic, readily traversed the plasma membrane of both cancer and fibroblast cell lines and elicited reporter-gene expression following intravenous delivery in vivo. The results of this study indicate that RALA presents an exciting delivery platform for the systemic delivery of nucleic acid therapeutics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates a series of dendrons based on the Newkome dendritic scaffold that displays a naturally occurring polyamine (spermine) on their surface. These dendrons have previously been shown to interact with DNA in a generation dependent manner with the more highly branched dendrons exhibiting a strong multivalency effect for the spermine surface groups. In this paper, we investigate the ability of these dendrons to transfect DNA into cells (human breast carcinoma cells, MDA-MB-231, and murine myoblast cells, C2C12) as determined by the luciferase assay. Although the dendrons are unable to transfect DNA in their own right, they are capable of delivering DNA in vitro when administered with chloroquine, which assists with escape from endocytic vesicles. The cytotoxicity of the dendrons was determined using the XTT assay, and it was shown that the dendrons were nontoxic either alone or in the presence of DNA. However, when administered with DNA and chloroquine, the most highly branched dendron did exhibit some cytotoxicity. This paper elucidates the relationship between in vitro transfection efficiency and toxicity. While transfection efficiencies are modest, the low toxicity of the dendrons, both in their own right, and in the presence of DNA, provides encouragement that this type of building block, which has a relatively high affinity for DNA, will provide a useful starting point for the further synthetic development of more effective gene transfection agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cell-specific delivery of polynucleic acids (e.g., DNA, RNA), gene therapy, has the potential to treat various diseases. In this chapter we discuss the use of organic electronic materials as non-viral gene delivery vectors and the great potential for electrochemically triggered gene delivery. We highlight some examples in this chapter based on fullerenes (bucky balls and carbon nanotubes), graphenes and electroactive polymers, particularly those that include experiments in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter examines key concepts with respect to cancer gene therapy and the current issues with respect to non-viral delivery. The biological and molecular barriers that need to be overcome before effective non-viral delivery systems can be appropriately designed for oncology applications are highlighted and ways to overcome these are discussed. Strategies developed to evade the immune response are also described and targeted gene delivery is examined with the most effective strategies highlighted. Finally, this chapter proposes a new way forward based on a growing body of evidence that supports a multifunctional delivery approach involving the creation of vectors, with a unique molecular architecture designed using a bottom-up approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’adénovirus possède plusieurs caractéristiques faisant de ce virus un candidat de choix pour la construction de vecteurs utiles dans les études de génomique fonctionnelle. Dans la majorité de ces applications, on a recours à un vecteur adénoviral de première génération délété de sa région E1. L’utilisation de vecteurs adénoviraux comprend deux maillons faibles : la construction du vecteur et la production subséquente de ce dernier. Le développement de méthodes alternatives est donc nécessaire pour renforcer ces deux maillons, permettant ainsi une utilisation étendue de ces vecteurs. Ce développement va s’articuler sur deux axes : l’ingénierie du vecteur de transfert pour la construction de l’adénovirus recombinant et l’ingénierie d’une lignée cellulaire pour la production du vecteur. En utilisant un vecteur de transfert adénoviral co-exprimant, à partir d’un promoteur régulable à la tétracycline, la protéase de l’adénovirus et une protéine de fluorescence verte (GFP) par l’intermédiaire d’un site d’entrée ribosomal interne (IRES), notre groupe a établi que la sélection positive, via l’expression ectopique de la protéase, est un processus efficace pour la création de librairie d’adénovirus recombinants. Par contre, la diversité atteinte dans ce premier système est relativement faible, environ 1 adénovirus recombinant par 1 000 cellules. Le travail effectué dans le cadre de cette thèse vise à construire un nouveau transfert de vecteur dans lequel l’expression de la protéase sera indépendante de celle du transgène permettant ainsi d’optimiser l’expression de la protéase. Ce travail d’optimisation a permis de réduire le phénomène de transcomplémentation du virus parental ce qui a fait grimper la diversité à 1 virus recombinant par 75 cellules. Ce système a été mis à l’épreuve en générerant une librairie adénovirale antisens dirigée contre la GFP. La diversité de cette librairie a été suffisante pour sélectionner un antisens réduisant de 75% l’expression de la GFP. L’amplification de ce vecteur adénoviral de première génération doit se faire dans une lignée cellulaire exprimant la région E1 telle que les cellules 293. Par contre, un adénovirus de première génération se répliquant dans les cellules 293 peut échanger, par recombinaison homologue, son transgène avec la région E1 de la cellule créant ainsi un adénovirus recombinant réplicatif (RCA), compromettant ainsi la pureté des stocks. Notre groupe a déjà breveté une lignée cellulaire A549 (BMAdE1) exprimant la région E1, mais qui ne peut pas recombiner avec le transgène du virus. Par contre, le niveau de réplication de l’adénovirus dans les BMAdE1 est sous-optimal, à peine 15-30% du niveau obtenu dans les cellules 293. Le travail fait dans le cadre de cette thèse a permis de mettre en évidence qu’une expression insuffisante d’E1B-55K était responsable de la mauvaise réplication du virus dans les BMAdE1. Nous avons produit de nouveaux clones à partir de la lignée parentale via une transduction avec un vecteur lentiviral exprimant E1B-55K. Nous avons confirmé que certains clones exprimaient une plus grande quantité d’E1B-55K et que ces clones amplifiaient de manière plus efficace un vecteur adénoviral de première génération. Ce clone a par la suite été adapté à la culture en suspension sans sérum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Improved display of foreign protein moieties in combination with beneficial alteration of the viral surface properties should be of value for targeted and enhanced gene delivery. Here, we describe a vector based on Autographa californica multiple nucleopolyhedrovirus (AcMNPV) displaying synthetic IgG-bincling domains (ZZ) of protein A fused to the transmembrane anchor of vesicular stomatitis virus (VSV) G protein. This display vector was equipped with a GFP/EGFP expression cassette enabling fluorescent detection in both insect and mammalian cells. The virus construct displayed the biologically active fusion protein efficiently and showed increased binding capacity to IgG. As the display is carried out using a membrane anchor of foreign origin, gp64 is left intact for virus entry, which may increase gene expression in the transduced mammalian cells. In addition, the viral vector can be targeted to any desired cell type via binding of ZZ domains when an appropriate IgG antibody is available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The energy of a unit vector field X on a closed Riemannian manifold M is defined as the energy of the section into T(1) M determined by X. For odd-dimensional spheres, the energy functional has an infimum for each dimension 2k + 1 which is not attained by any non-singular vector field for k > 1. For k = 1, Hopf vector fields are the unique minima. In this paper we show that for any closed Riemannian manifold, the energy of a frame defined on the manifold, possibly except on a finite subset, admits a lower bound in terms of the total scalar curvature of the manifold. In particular, for odd-dimensional spheres this lower bound is attained by a family of frames defined on the sphere minus one point and consisting of vector fields parallel along geodesics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lactoferrin (Lf) is present in milk and gland secretions and serve as an antimicrobial function. Insufficient amounts of Lf in some secretions also appear to correlate with certain health problems. Protection against gastroenteritis is the most likely biologically relevant activity of lactoferrin. Multiple in vitro and animal studies have shown a protective effect of lactoferrin on infections with enteric microorganisms, including rotavirus, Giardia, Shigella, Salmonella and the diarrheagenic Escherichia coli. Lactoferrin has two major effects on enteric pathogens: it inhibits growth and it impairs function of surface expressed virulence factors thereby decreasing their ability to adhere or to invade mammalian cells. Lf also inhibits several species of fungi and certain parasites. This review covers the role of Lf in clearing the parasitic infections. The mechanism by which lactoferrin inhibits some parasites may be via stimulation of the process of phagocytosis, whereby immune cells engulf and digest foreign organisms. Trichomonas vaginalis is a protozoan responsible for the number one, non-viral sexually transmitted disease. In this review, we also discussed the role of Lf in cervical infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Public capital has been considered to be the wheels of economic activity in a nation or region. The reverse effect, the contribution of economic growth to public capital, is also worth analysis. The non-structural vector auto-regression (VAR) approach is performed for the Australian economy using yearly data for the 1960-2008 period. The optimal lag is investigated to build the VAR model that is then tested for stability. The impulse response function is further employed to examine the response of one economic variable to the innovation of others and to determine the lagged terms for the maximum absolute value of the other variables’ responses. The results will provide historical evidence for the federal and regional governments of Australia to estimate the effects of these production variables, in particular, the effect of infrastructure spending on the gross domestic product.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

D. Hoffman, R. Osserman e R. Schoen mostraram que se a aplicação de Gauss de uma superfície orientada completa de curvatura média constante M imersa em R³ está contida em um hemisfério fechado de S² (equivalentemente, a função não muda de sinal em M, onde n é um vetor unitário normal de M e v algum vetor não nulo de R³), então M é invariante por um subgrupo a um parâmetro de translações de R³ (aquele determinado por v). Neste trabalho obtemos uma extensão deste resultado para o caso em que o espaço ambiente é uma variedade riemanniana e M uma hipersuperfície em N requerendo que a função não mude de sinal em M, onde V é um campo de Killing em N. Na parte final deste trabalho consideramos uma variedade riemanniana Killing paralelizável N para definir uma translação Y: M -> Rn de uma hipersuperfície M de N que é uma extensão natural da aplicação de Gauss de uma hipersuperfície de Rn. Considerando as mesmas hipóteses para a imagem de y obtemos uma extensão do resultado original de Hoffman-Osserman-Schoen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.