76 resultados para neurorehabilitation
Resumo:
Stroke is one of the most common conditions requiring rehabilitation, and its motor impairments are a major cause of permanent disability. Hemiparesis is observed by 80% of the patients after acute stroke. Neuroimaging studies showed that real and imagined movements have similarities regarding brain activation, supplying evidence that those similarities are based on the same process. Within this context, the combination of MP with physical and occupational therapy appears to be a natural complement based on neurorehabilitation concepts. Our study seeks to investigate if MP for stroke rehabilitation of upper limbs is an effective adjunct therapy. PubMed (Medline), ISI knowledge (Institute for Scientific Information) and SciELO (Scientific Electronic Library) were terminated on 20 February 2015. Data were collected on variables as follows: sample size, type of supervision, configuration of mental practice, setting the physical practice (intensity, number of sets and repetitions, duration of contractions, rest interval between sets, weekly and total duration), measures of sensorimotor deficits used in the main studies and significant results. Random effects models were used that take into account the variance within and between studies. Seven articles were selected. As there was no statistically significant difference between the two groups (MP vs Control), showed a – 0.6 (95% CI: –1.27 to 0.04), for upper limb motor restoration after stroke. The present meta-analysis concluded that MP is not effective as adjunct therapeutic strategy for upper limb motor restoration after stroke.
Resumo:
OBJECTIVE There is mixed evidence regarding neural change following cognitive training. Brain activation increase, decrease, or a combination of both may occur. We investigated training-induced neural change using two different memory training approaches. METHODS Very preterm born children (aged 7-12 years) were randomly allocated to a memory strategy training, an intensive working memory practice or a waiting control group. Before and immediately after the trainings and the waiting period, brain activation during a visual working memory task was measured using fMRI and cognitive performance was assessed. RESULTS Following both memory trainings, there was a significant decrease of fronto-parietal brain activation and a significant increase of memory performance. In the control group, no neural or performance change occurred after the waiting period. CONCLUSION These pilot data point towards a training-related decrease of brain activation, independent of the training approach. Our data highlight the high training-induced plasticity of the child's brain during development.
Resumo:
La Organización Mundial de la Salud (OMS) prevé que para el año 2020, el Daño Cerebral Adquirido (DCA) estará entre las 10 causas más comunes de discapacidad. Estas lesiones, dadas sus consecuencias físicas, sensoriales, cognitivas, emocionales y socioeconómicas, cambian dramáticamente la vida de los pacientes y sus familias. Las nuevas técnicas de intervención precoz y el desarrollo de la medicina intensiva en la atención al DCA han mejorado notablemente la probabilidad de supervivencia. Sin embargo, hoy por hoy, las lesiones cerebrales no tienen ningún tratamiento quirúrgico que tenga por objetivo restablecer la funcionalidad perdida, sino que las terapias rehabilitadoras se dirigen hacia la compensación de los déficits producidos. Uno de los objetivos principales de la neurorrehabilitación es, por tanto, dotar al paciente de la capacidad necesaria para ejecutar las Actividades de Vida Diaria (AVDs) necesarias para desarrollar una vida independiente, siendo fundamentales aquellas en las que la Extremidad Superior (ES) está directamente implicada, dada su gran importancia a la hora de la manipulación de objetos. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma centrado en ofrecer una práctica personalizada, monitorizada y ubicua con una valoración continua de la eficacia y de la eficiencia de los procedimientos y con capacidad de generar conocimientos que impulsen la ruptura del paradigma de actual. Los nuevos objetivos consistirán en minimizar el impacto de las enfermedades que afectan a la capacidad funcional de las personas, disminuir el tiempo de incapacidad y permitir una gestión más eficiente de los recursos. Estos objetivos clínicos, de gran impacto socio-económico, sólo pueden alcanzarse desde una apuesta decidida en nuevas tecnologías, metodologías y algoritmos capaces de ocasionar la ruptura tecnológica necesaria que permita superar las barreras que hasta el momento han impedido la penetración tecnológica en el campo de la rehabilitación de manera universal. De esta forma, los trabajos y resultados alcanzados en la Tesis son los siguientes: 1. Modelado de AVDs: como paso previo a la incorporación de ayudas tecnológicas al proceso rehabilitador, se hace necesaria una primera fase de modelado y formalización del conocimiento asociado a la ejecución de las actividades que se realizan como parte de la terapia. En particular, las tareas más complejas y a su vez con mayor repercusión terapéutica son las AVDs, cuya formalización permitirá disponer de modelos de movimiento sanos que actuarán de referencia para futuros desarrollos tecnológicos dirigidos a personas con DCA. Siguiendo una metodología basada en diagramas de estados UML se han modelado las AVDs 'servir agua de una jarra' y 'coger un botella' 2. Monitorización ubícua del movimiento de la ES: se ha diseñado, desarrollado y validado un sistema de adquisición de movimiento basado en tecnología inercial que mejora las limitaciones de los dispositivos comerciales actuales (coste muy elevado e incapacidad para trabajar en entornos no controlados); los altos coeficientes de correlación y los bajos niveles de error obtenidos en los corregistros llevados a cabo con el sistema comercial BTS SMART-D demuestran la alta precisión del sistema. También se ha realizado un trabajo de investigación exploratorio de un sistema de captura de movimiento de coste muy reducido basado en visión estereoscópica, habiéndose detectado los puntos clave donde se hace necesario incidir desde un punto de vista tecnológico para su incorporación en un entorno real 3. Resolución del Problema Cinemático Inverso (PCI): se ha diseñado, desarrollado y validado una solución al PCI cuando el manipulador se corresponde con una ES humana estudiándose 2 posibles alternativas, una basada en la utilización de un Perceptrón Multicapa (PMC) y otra basada en sistemas Artificial Neuro-Fuzzy Inference Systems (ANFIS). La validación, llevada a cabo utilizando información relativa a los modelos disponibles de AVDs, indica que una solución basada en un PMC con 3 neuronas en la capa de entrada, una capa oculta también de 3 neuronas y una capa de salida con tantas neuronas como Grados de Libertad (GdLs) tenga el modelo de la ES, proporciona resultados, tanto de precisión como de tiempo de cálculo, que la hacen idónea para trabajar en sistemas con requisitos de tiempo real 4. Control inteligente assisted-as-needed: se ha diseñado, desarrollado y validado un algoritmo de control assisted-as-needed para una ortesis robótica con capacidades de actuación anticipatoria de la que existe un prototipo implementado en la actualidad. Los resultados obtenidos demuestran cómo el sistema es capaz de adaptarse al perfil disfuncional del paciente activando la ayuda en instantes anteriores a la ocurrencia de movimientos incorrectos. Esta estrategia implica un aumento en la participación del paciente y, por tanto, en su actividad muscular, fomentándose los procesos la plasticidad cerebral responsables del reaprendizaje o readaptación motora 5. Simuladores robóticos para planificación: se propone la utilización de un simulador robótico assisted-as-needed como herramienta de planificación de sesiones de rehabilitación personalizadas y con un objetivo clínico marcado en las que interviene una ortesis robotizada. Los resultados obtenidos evidencian como, tras la ejecución de ciertos algoritmos sencillos, es posible seleccionar automáticamente una configuración para el algoritmo de control assisted-as-needed que consigue que la ortesis se adapte a los criterios establecidos desde un punto de vista clínico en función del paciente estudiado. Estos resultados invitan a profundizar en el desarrollo de algoritmos más avanzados de selección de parámetros a partir de baterías de simulaciones Estos trabajos han servido para corroborar las hipótesis de investigación planteadas al inicio de la misma, permitiendo, asimismo, la apertura de nuevas líneas de investigación. Summary The World Health Organization (WHO) predicts that by the year 2020, Acquired Brain Injury (ABI) will be among the ten most common ailments. These injuries dramatically change the life of the patients and their families due to their physical, sensory, cognitive, emotional and socio-economic consequences. New techniques of early intervention and the development of intensive ABI care have noticeably improved the survival rate. However, in spite of these advances, brain injuries still have no surgical or pharmacological treatment to re-establish the lost functions. Neurorehabilitation therapies address this problem by restoring, minimizing or compensating the functional alterations in a person disabled because of a nervous system injury. One of the main objectives of Neurorehabilitation is to provide patients with the capacity to perform specific Activities of the Daily Life (ADL) required for an independent life, especially those in which the Upper Limb (UL) is directly involved due to its great importance in manipulating objects within the patients' environment. The incorporation of new technological aids to the neurorehabilitation process tries to reach a new paradigm focused on offering a personalized, monitored and ubiquitous practise with continuous assessment of both the efficacy and the efficiency of the procedures and with the capacity of generating new knowledge. New targets will be to minimize the impact of the sicknesses affecting the functional capabilitiies of the subjects, to decrease the time of the physical handicap and to allow a more efficient resources handling. These targets, of a great socio-economic impact, can only be achieved by means of new technologies and algorithms able to provoke the technological break needed to beat the barriers that are stopping the universal penetration of the technology in the field of rehabilitation. In this way, this PhD Thesis has achieved the following results: 1. ADL Modeling: as a previous step to the incorporation of technological aids to the neurorehabilitation process, it is necessary a first modelling and formalization phase of the knowledge associated to the execution of the activities that are performed as a part of the therapy. In particular, the most complex and therapeutically relevant tasks are the ADLs, whose formalization will produce healthy motion models to be used as a reference for future technological developments. Following a methodology based on UML state-chart diagrams, the ADLs 'serving water from a jar' and 'picking up a bottle' have been modelled 2. Ubiquitous monitoring of the UL movement: it has been designed, developed and validated a motion acquisition system based on inertial technology that improves the limitations of the current devices (high monetary cost and inability of working within uncontrolled environments); the high correlation coefficients and the low error levels obtained throughout several co-registration sessions with the commercial sys- tem BTS SMART-D show the high precision of the system. Besides an exploration of a very low cost stereoscopic vision-based motion capture system has been carried out and the key points where it is necessary to insist from a technological point of view have been detected 3. Inverse Kinematics (IK) problem solving: a solution to the IK problem has been proposed for a manipulator that corresponds to a human UL. This solution has been faced by means of two different alternatives, one based on a Mulilayer Perceptron (MLP) and another based on Artificial Neuro-Fuzzy Inference Systems (ANFIS). The validation of these solutions, carried out using the information regarding the previously generated motion models, indicate that a MLP-based solution, with an architecture consisting in 3 neurons in the input layer, one hidden layer of 3 neurons and an output layer with as many neurons as the number of Degrees of Freedom (DoFs) that the UL model has, is the one that provides the best results both in terms of precission and in terms of processing time, making in idoneous to be integrated within a system with real time restrictions 4. Assisted-as-needed intelligent control: an assisted-as-needed control algorithm with anticipatory actuation capabilities has been designed, developed and validated for a robotic orthosis of which there is an already implemented prototype. Obtained results demonstrate that the control system is able to adapt to the dysfunctional profile of the patient by triggering the assistance right before an incorrect movement is going to take place. This strategy implies an increase in the participation of the patients and in his or her muscle activity, encouraging the neural plasticity processes in charge of the motor learning 5. Planification with a robotic simulator: in this work a robotic simulator is proposed as a planification tool for personalized rehabilitation sessions under a certain clinical criterium. Obtained results indicate that, after the execution of simple parameter selection algorithms, it is possible to automatically choose a specific configuration that makes the assisted-as-needed control algorithm to adapt both to the clinical criteria and to the patient. These results invite researchers to work in the development of more complex parameter selection algorithms departing from simulation batteries Obtained results have been useful to corroborate the hypotheses set out at the beginning of this PhD Thesis. Besides, they have allowed the creation of new research lines in all the studied application fields.
Resumo:
Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is associated with high health care costs as a result of the acute treatment and long term rehabilitation involved. Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation programs. In general, research has focused on predicting the overall improvement of patients with ABI. The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have been used to construct the prediction models. 10-fold cross validation was carried out in order to test the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Performance of the models was tested through specificity, sensitivity and accuracy analysis and confusion matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients.
Resumo:
Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence.
Resumo:
In the last decades, neuropsychological theories tend to consider cognitive functions as a result of the whole brainwork and not as individual local areas of its cortex. Studies based on neuroimaging techniques have increased in the last years, promoting an exponential growth of the body of knowledge about relations between cognitive functions and brain structures [1]. However, so fast evolution make complicated to integrate them in verifiable theories and, even more, translated in to cognitive rehabilitation. The aim of this research work is to develop a cognitive process-modeling tool. The purpose of this system is, in the first term, to represent multidimensional data, from structural and functional connectivity, neuroimaging, data from lesion studies and derived data from clinical intervention [2][3]. This will allow to identify consolidated knowledge, hypothesis, experimental designs, new data from ongoing studies and emerging results from clinical interventions. In the second term, we pursuit to use Artificial Intelligence to assist in decision making allowing to advance towards evidence based and personalized treatments in cognitive rehabilitation. This work presents the knowledge base design of the knowledge representation tool. It is compound of two different taxonomies (structure and function) and a set of tags linking both taxonomies at different levels of structural and functional organization. The remainder of the abstract is organized as follows: Section 2 presents the web application used for gathering necessary information for generating the knowledge base, Section 3 describes knowledge base structure and finally Section 4 expounds reached conclusions.
Resumo:
The number and grade of injured neuroanatomic structures and the type of injury determine the degree of impairment after a brain injury event and the recovery options of the patient. However, the body of knowledge and clinical intervention guides are basically focused on functional disorder and they still do not take into account the location of injuries. The prognostic value of location information is not known in detail either. This paper proposes a feature-based detection algorithm, named Neuroanatomic-Based Detection Algorithm (NBDA), based on SURF (Speeded Up Robust Feature) to label anatomical brain structures on cortical and sub-cortical areas. Themain goal is to register injured neuroanatomic structures to generate a database containing patient?s structural impairment profile. This kind of information permits to establish a relation with functional disorders and the prognostic evolution during neurorehabilitation procedures.
Resumo:
The study of the effectiveness of the cognitive rehabilitation processes and the identification of cognitive profiles, in order to define comparable populations, is a controversial area, but concurrently it is strongly needed in order to improve therapies. There is limited evidence about cognitive rehabilitation efficacy. Many of the trials conclude that in spite of an apparent clinical good response, differences do not show statistical significance. The common feature in all these trials is heterogeneity among populations. In this situation, observational studies on very well controlled cohort of studies, together with innovative methods in knowledge extraction, could provide methodological insights for the design of more accurate comparative trials. Some correlation studies between neuropsychological tests and patients capacities have been carried out -1---2- and also correlation between tests and morphological changes in the brain -3-. The procedures efficacy depends on three main factors: the affectation profile, the scheduled tasks and the execution results. The relationship between them makes up the cognitive rehabilitation as a discipline, but its structure is not properly defined. In this work we present a clustering method used in Neuro Personal Trainer (NPT) to group patients into cognitive profiles using data mining techniques. The system uses these clusters to personalize treatments, using the patients assigned cluster to select which tasks are more suitable for its concrete needs, by comparing the results obtained in the past by patients with the same profile.
Resumo:
Traumatic Brain Injury -TBI- -1- is defined as an acute event that causes certain damage to areas of the brain. TBI may result in a significant impairment of an individuals physical, cognitive and psychosocial functioning. The main consequence of TBI is a dramatic change in the individuals daily life involving a profound disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges of TBI Neuroimaging is to develop robust automated image analysis methods to detect signatures of TBI, such as: hyper-intensity areas, changes in image contrast and in brain shape. The final goal of this research is to develop a method to identify the altered brain structures by automatically detecting landmarks on the image where signal changes and to provide comprehensive information to the clinician about them. These landmarks identify injured structures by co-registering the patient?s image with an atlas where landmarks have been previously detected. The research work has been initiated by identifying brain structures on healthy subjects to validate the proposed method. Later, this method will be used to identify modified structures on TBI imaging studies.
Resumo:
Acquired brain injury (ABI) 1-2 refers to any brain damage occurring after birth. It usually causes certain damage to portions of the brain. ABI may result in a significant impairment of an individuals physical, cognitive and/or psychosocial functioning. The main causes are traumatic brain injury (TBI), cerebrovascular accident (CVA) and brain tumors. The main consequence of ABI is a dramatic change in the individuals daily life. This change involves a disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges in neurorehabilitation is to obtain a dysfunctional profile of each patient in order to personalize the treatment. This paper proposes a system to generate a patient s dysfunctional profile by integrating theoretical, structural and neuropsychological information on a 3D brain imaging-based model. The main goal of this dysfunctional profile is to help therapists design the most suitable treatment for each patient. At the same time, the results obtained are a source of clinical evidence to improve the accuracy and quality of our rehabilitation system. Figure 1 shows the diagram of the system. This system is composed of four main modules: image-based extraction of parameters, theoretical modeling, classification and co-registration and visualization module.
Resumo:
El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.
Resumo:
El Daño Cerebral (DC) se refiere a cualquier lesión producida en el cerebro y que afecta a su funcionalidad. Se ha convertido en una de las principales causas de discapacidad neurológica de las sociedades desarrolladas. Hasta la más sencilla de las actividades y acciones que realizamos en nuestro día a día involucran a los procesos cognitivos. Por ello, la alteración de las funciones cognitivas como consecuencia del DC, limita no sólo la calidad de vida del paciente sino también la de las persona de su entorno. La rehabilitación cognitiva trata de aumentar la autonomía y calidad de vida del paciente minimizando o compensando los desórdenes funciones causados por el episodio de DC. La plasticidad cerebral es una propiedad intrínseca al sistema nervioso humano por la que en función a la experiencia se crean nuevos patrones de conectividad. El propósito de la neurorrehabilitación es precisamente modular esta propiedad intrínseca a partir de ejercicios específicos, los cuales podrían derivar en la recuperación parcial o total de las funciones afectadas. La incorporación de la tecnología a las terapias de rehabilitación ha permitido desarrollar nuevas metodologías de trabajo. Esto ha ayudado a hacer frente a las dificultades de la rehabilitación que los procesos tradicionales no logran abarcar. A pesar del gran avance realizado en los Ãoltimos años, todavía existen debilidades en el proceso de rehabilitación; por ejemplo, la trasferencia a la vida real de las habilidades logradas durante la terapia de rehabilitación, así como su generalización a otras actividades cotidianas. Los entornos virtuales pueden reproducir situaciones cotidianas. Permiten simular, de forma controlada, los requisitos conductuales que encontramos en la vida real. En un contexto terapéutico, puede ser utilizado por el neuropsicólogo para corregir en el paciente comportamientos patológicos no deseados, realizar intervenciones terapéuticas sobre Actividades de Vida Diaria que estimulen conductas adaptativas. A pesar de que las tecnologías actuales tienen potencial suficiente para aportar nuevos beneficios al proceso de rehabilitación, existe cierta reticencia a su incorporación a la clínica diaria. A día de hoy, no se ha podido demostrar que su uso aporte una mejorar significativa con respecto a otro tipo de intervención; en otras palabras, no existe evidencia científica de la eficacia del uso de entornos virtuales interactivos en rehabilitación. En este contexto, la presente Tesis Doctoral trata de abordar los aspectos que mantienen a los entornos virtuales interactivos al margen de la rutina clínica diaria. Se estudian las diferentes etapas del proceso de rehabilitación cognitiva relacionado con la integración y uso de estos entornos: diseño de las actividades, su implementación en el entorno virtual, y finalmente la ejecución por el paciente y análisis de los respectivos datos. Por tanto, los bloques en los que queda dividido el trabajo de investigación expuesto en esta memoria son: 1. Diseño de las AVD. La definición y configuración de los elementos que componen la AVD permite al terapeuta diseñar estrategias de intervención terapéutica para actuar sobre el comportamiento del paciente durante la ejecución de la actividad. En esta parte de la tesis se pretende formalizar el diseño de las AVD de tal forma que el terapeuta pueda explotar el potencial tecnológico de los entornos virtuales interactivos abstrayéndose de la complejidad implícita a la tecnología. Para hacer viable este planteamiento se propone una metodología que permita modelar la definición de las AVD, representar el conocimiento implícito en ellas, y asistir al neuropsicólogo durante el proceso de diseño de la intervención clínica. 2. Entorno virtual interactivo. El gran avance tecnológico producido durante los Ãoltimos años permite reproducir AVD interactivas en un contexto de uso clínico. El objetivo perseguido en esta parte de la Tesis es el de extraer las características potenciales de esta solución tecnológica y aplicarla a las necesidades y requisitos de la rehabilitación cognitiva. Se propone el uso de la tecnología de Vídeo Interactivo para el desarrollo de estos entornos virtuales. Para la evaluación de la misma se realiza un estudio experimental dividido en dos fases con la participación de sujetos sanos y pacientes, donde se valora su idoneidad para ser utilizado en terapias de rehabilitación cognitiva. 3. Monitorización de las AVD. El uso de estos entornos virtuales interactivos expone al paciente ante una gran cantidad de estímulos e interacciones. Este hecho requiere de instrumentos de monitorización avanzado que aporten al terapeuta información objetiva sobre el comportamiento del paciente, lo que le podría permitir por ejemplo evaluar la eficacia del tratamiento. En este apartado se propone el uso de métricas basadas en la atención visual y la interacción con el entorno para conocer datos sobre el comportamiento del paciente durante la AVD. Se desarrolla un sistema de monitorización integrado con el entorno virtual que ofrece los instrumentos necesarios para la evaluación de estas métricas para su uso clínico. La metodología propuesta ha permitido diseñar una AVD basada en la definición de intervenciones terapéuticas. Posteriormente esta AVD has sido implementada mediante la tecnología de vídeo interactivo, creando así el prototipo de un entorno virtual para ser utilizado por pacientes con déficit cognitivo. Los resultados del estudio experimental mediante el cual ha sido evaluado demuestran la robustez y usabilidad del sistema, así como su capacidad para intervenir sobre el comportamiento del paciente. El sistema monitorización que ha sido integrado con el entorno virtual aporta datos objetivos sobre el comportamiento del paciente durante la ejecución de la actividad. Los resultados obtenidos permiten contrastar las hipótesis de investigación planteadas en la Tesis Doctoral, aportando soluciones que pueden ayudar a la integración de los entornos virtuales interactivos en la rutina clínica. Esto abre una nueva vía de investigación y desarrollo que podría suponer un gran progreso y mejora en los procesos de neurorrehabilitación cognitiva en daño cerebral. ABSTRACT Brain injury (BI) refers to medical conditions that occur in the brain, altering its function. It becomes one of the main neurological disabilities in the developed society. Cognitive processes determine individual performance in Activities of Daily Living (ADL), thus, the cognitive disorders after BI result in a loss of autonomy and independence, affecting the patient’s quality of life. Cognitive rehabilitation seeks to increase patients’ autonomy and quality of life minimizing or compensating functional disorders showed by BI patients. Brain plasticity is an intrinsic property of the human nervous system whereby its structure is changed depending on experience. Neurorehabilitation pursuits a precise modulation of this intrinsic property, based on specific exercises to induce functional changes, which could result in partial or total recovery of the affected functions. The new methodologies that can be approached by applying technologies to the rehabilitation process, permit to deal with the difficulties which are out of the scope of the traditional rehabilitation. Despite this huge breakthrough, there are still weaknesses in the rehabilitation process, such as the transferring to the real life those skills reached along the therapy, and its generalization to others daily activities. Virtual environments reproduce daily situations. Behavioural requirements which are similar to those we perceive in real life, are simulated in a controlled way. In these virtual environments the therapist is allowed to interact with patients without even being present, inhibiting unsuitable behaviour patterns, stimulating correct answers throughout the simulation and enhancing stimuli with supplementary information when necessary. Despite the benefits which could be brought to the cognitive rehabilitation by applying the potential of the current technologies, there are barriers for widespread use of interactive virtual environments in clinical routine. At present, the evidence that these technologies bring a significant improvement to the cognitive therapies is limited. In other words, there is no evidence about the efficacy of using virtual environments in rehabilitation. In this context, this work aims to address those issues which keep the virtual environments out of the clinical routine. The stages of the cognitive rehabilitation process, which are related with the use and integration of these environments, are analysed: activities design, its implementation in the virtual environment, and the patient’s performance and the data analysis. Hence, the thesis is comprised of the main chapters that are listed below: 1. ADL Design.Definition and configuration of the elements which comprise the ADL allow the therapist to design intervention strategies to influence over the patient behaviour along the activity performance. This chapter aims to formalise the AVD design in order to help neuropsychologists to make use of the interactive virtual environments’ potential but isolating them from the complexity of the technology. With this purpose a new methodology is proposed as an instrument to model the ADL definition, to manage its implied knowledge and to assist the clinician along the design process of the therapeutic intervention. 2. Interactive virtual environment. Continuous advancements make the technology feasible for re-creating rehabilitation therapies based on ADL. The goal of this stage is to analyse the main features of virtual environments in order to apply them according to the cognitive rehabilitation’s requirements. The interactive video is proposed as the technology to develop virtual environments. Experimental study is carried out to assess the suitability of the interactive video to be used by cognitive rehabilitation. 3. ADL monitoring system. This kind of virtual environments bring patients in front lots of stimuli and interactions. Thus, advanced monitoring instruments are needed to provide therapist with objective information about patient’s behaviour. This thesis chapter propose the use of metrics rely on visual patients’ visual attention and their interactions with the environment. A monitoring system has been developed and integrated with the interactive video-based virtual environment, providing neuropsychologist with the instruments to evaluate the clinical force of this metrics. Therapeutic interventions-based ADL has been designed by using the proposed methodology. Interactive video technology has been used to develop the ADL, resulting in a virtual environment prototype to be use by patients who suffer a cognitive deficits. An experimental study has been performed to evaluate the virtual environment, whose overcomes show the usability and solidity of the system, and also its capacity to have influence over patient’s behaviour. The monitoring system, which has been embedded in the virtual environment, provides objective information about patients’ behaviour along their activity performance. Research hypothesis of the Thesis are proven by the obtained results. They could help to incorporate the interactive virtual environments in the clinical routine. This may be a significant step forward to enhance the cognitive neurorehabilitation processes in brain injury.
Resumo:
Nervous system disorders are associated with cognitive and motor deficits, and are responsible for the highest disability rates and global burden of disease. Their recovery paths are vulnerable and dependent on the effective combination of plastic brain tissue properties, with complex, lengthy and expensive neurorehabilitation programs. This work explores two lines of research, envisioning sustainable solutions to improve treatment of cognitive and motor deficits. Both projects were developed in parallel and shared a new sensible approach, where low-cost technologies were integrated with common clinical operative procedures. The aim was to achieve more intensive treatments under specialized monitoring, improve clinical decision-making and increase access to healthcare. The first project (articles I – III) concerned the development and evaluation of a web-based cognitive training platform (COGWEB), suitable for intensive use, either at home or at institutions, and across a wide spectrum of ages and diseases that impair cognitive functioning. It was tested for usability in a memory clinic setting and implemented in a collaborative network, comprising 41 centers and 60 professionals. An adherence and intensity study revealed a compliance of 82.8% at six months and an average of six hours/week of continued online cognitive training activities. The second project (articles IV – VI) was designed to create and validate an intelligent rehabilitation device to administer proprioceptive stimuli on the hemiparetic side of stroke patients while performing ambulatory movement characterization (SWORD). Targeted vibratory stimulation was found to be well tolerated and an automatic motor characterization system retrieved results comparable to the first items of the Wolf Motor Function Test. The global system was tested in a randomized placebo controlled trial to assess its impact on a common motor rehabilitation task in a relevant clinical environment (early post-stroke). The number of correct movements on a hand-to-mouth task was increased by an average of 7.2/minute while the probability to perform an error decreased from 1:3 to 1:9. Neurorehabilitation and neuroplasticity are shifting to more neuroscience driven approaches. Simultaneously, their final utility for patients and society is largely dependent on the development of more effective technologies that facilitate the dissemination of knowledge produced during the process. The results attained through this work represent a step forward in that direction. Their impact on the quality of rehabilitation services and public health is discussed according to clinical, technological and organizational perspectives. Such a process of thinking and oriented speculation has led to the debate of subsequent hypotheses, already being explored in novel research paths.
Resumo:
INTRODUCTION: Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. METHODS: From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. RESULTS: Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation between classes; longitudinal regression modelling of the CRS-R data identified distinct outcome evolution, but not earlier than 19 days. Second, the MBT yielded a significant outcome predictability in the acute phase (p<0.02, sensitivity>0.81). Third, a statistical comparison of the CRS-R subscales weighted by MBT became significantly predictive for DOC outcome (p<0.02). DISCUSSION: The association of MBT and CRS-R scoring improves significantly the evaluation of consciousness and the predictability of outcome in the acute phase. Subtle motor behaviour assessment provides accurate insight into the amount and the content of consciousness even in the case of cognitive motor dissociation.