885 resultados para neuronal death
Resumo:
The term neurodegeneration defines numerous conditions that modify neuron’s normal functions in the human brain where is possible to observe a progressive and consistent neuronal loss. The mechanisms involved in neurodegenerative chronic and acute diseases evolution are not completely understood yet, however they share common characteristics such as misfolded proteins, oxidative stress, inflammation, excitotoxicity, and neuronal loss. Many studies have shown the frequency to develop neurodegenerative chronic diseases several years after an acute brain injury. In addition, many patients show, after a traumatic brain injury, motor and cognitive manifestations that are close to which are observed in neurodegenerative chronic patients. For this reason it is evident how is fundamental the concept of neuroprotection as a way to modulate the neurodegenerative processes evolution. Neuroinflammation, oxidative stress and the apoptotic process may be functional targets where operate to this end. Taking into account these considerations, the aim of the present study is to identify potential common pathogenetic pathways in neurodegenerative diseases using an integrated approach of preclinical studies. The goal is to delineate therapeutic strategies for the prevention of neuroinflammation, neurodegeneration and dysfunctions associated to Parkinson’s disease (PD) and cerebral ischemia. In the present study we used a murine model of PD treated with an isothiocyanate, 6-MSITC, able to quench ROS formation, restore the antioxidant GSH system, slow down the apoptotic neuronal death and counteract motor dysfunction induced by 6-OHDA. In the second study we utilized a transgenic mouse model knockout for CD36 receptor to investigate the inflammation involvement in a long term study of MCAo, which shows a better outcome after the damage induced. In conclusion, results in this study allow underlying the connection among these pathologies, and the importance of a neuroprotective strategy able to restore neurons activity where current drugs therapies have shown palliative but not healing abilities.
Resumo:
Bacterial meningitis is characterized by an inflammatory reaction to the invading pathogens that can ultimately lead to sensorineural hearing loss, permanent brain injury, or death. The matrix metalloproteinases (MMPs) and tumor necrosis factor alpha-converting enzyme (TACE) are key mediators that promote inflammation, blood-brain barrier disruption, and brain injury in bacterial meningitis. Doxycycline is a clinically used antibiotic with anti-inflammatory effects that lead to reduced cytokine release and the inhibition of MMPs. Here, doxycycline inhibited TACE with a 50% inhibitory dose of 74 microM in vitro and reduced the amount of tumor necrosis factor alpha released into the cerebrospinal fluid by 90% in vivo. In an infant rat model of pneumococcal meningitis, a single dose of doxycycline (30 mg/kg) given as adjuvant therapy in addition to ceftriaxone 18 h after infection significantly reduced the mortality, the blood-brain barrier disruption, and the extent of cortical brain injury. Adjuvant doxycycline (30 mg/kg given subcutaneously once daily for 4 days) also attenuated hearing loss, as assessed by auditory brainstem response audiometry, and neuronal death in the cochlear spiral ganglion at 3 weeks after infection. Thus, doxycycline, probably as a result of its anti-inflammatory properties, had broad beneficial effects in the brain and the cochlea and improved survival in this model of pneumococcal meningitis in infant rats.
Resumo:
Sustained high-level exposure to glutamate, an excitatory amino acid neurotransmitter, leads to neuronal death. Kynurenic acid attenuates the toxic effects of glutamate by inhibition of neuronal excitatory amino acid receptors, including the N-methyl-D-aspartate subtype. To evaluate the role of glutamate in causing neuronal injury in a rat model of meningitis due to group B streptococci, animals were treated with kynurenic acid (300 mg/kg subcutaneously once daily) or saline beginning at the time of infection. Histopathologic examination after 24-72 h showed two distinct forms of neuronal injury, areas of neuronal necrosis in the cortex and injury of dentate granule cells in the hippocampus. Animals treated with kynurenic acid showed significantly less neuronal injury (P < .03) in the cortex and the hippocampus than did untreated controls. These results suggest an important contribution of glutamate to neurotoxicity in this animal model of neonatal meningitis.
Resumo:
OBJECT: Brain tissue acidosis is known to mediate neuronal death. Therefore the authors measured the main parameters of cerebral acid-base homeostasis, as well as their interrelations, shortly after severe traumatic brain injury (TBI) in humans. METHODS: Brain tissue pH, PCO2, PO2, and/or lactate were measured in 151 patients with severe head injuries, by using a Neurotrend sensor and/or a microdialysis probe. Monitoring was started as soon as possible after the injury and continued for up to 4 days. During the 1st day following the trauma, the brain tissue pH was significantly lower, compared with later time points, in patients who died or remained in a persistent vegetative state. Six hours after the injury, brain tissue PCO2 was significantly higher in patients with a poor outcome compared with patients with a good outcome. Furthermore, significant elevations in cerebral concentrations of lactate were found during the 1st day after the injury, compared with later time points. These increases in lactate were typically more pronounced in patients with a poor outcome. Similar biochemical changes were observed during later hypoxic events. CONCLUSIONS: Severe human TBI profoundly disturbs cerebral acid-base homeostasis. The observed pH changes persist for the first 24 hours after the trauma. Brain tissue acidosis is associated with increased tissue PCO2 and lactate concentration; these pathobiochemical changes are more severe in patients who remain in a persistent vegetative state or die. Furthermore, increased brain tissue PCO2 (> 60 mm Hg) appears to be a useful clinical indicator of critical cerebral ischemia, especially when accompanied by increased lactate concentrations.
Resumo:
Excitatory amino acids (EAA) and particularly glutamate toxicity have been implicated in the pathogenesis of neuronal injury occurring in bacterial meningitis by activating the N-methyl-d aspartate (NMDA) receptor complex. Here, we evaluated the effect of adjuvant treatment with the antitussive drug dextromethorphan (DM), a non-competitive NMDA receptor antagonist with neuroprotective potential, in an infant rat model of pneumococcal meningitis. The experiments were carried out in postnatal day 6 (P6) and 11 (P11) animals. Pharmacokinetics of DM and its major metabolite dextrorphan (DO) were performed for dose finding. In our study, DM did not alter clinical parameters (clinical score, motor activity, incidence of seizures, spontaneous mortality) and cortical neuronal injury but increased the occurrence of ataxia (P<0.0001). When DM treatment was started at the time of infection (DM i.p. 15 mg/kg at 0, 4, 8 and 16 hours (h) post infection) in P11 animals, an aggravation of apoptotic neuronal death in the hippocampal dentate gyrus was found (P<0.05). When treatment was initiated during acute pneumococcal meningitis (DM i.p. 15 mg/kg at 12 and 15 h and 7.5 mg/kg at 18 and 21 h after infection), DM had no effect on the extent of brain injury but reduced the occurrence of seizures (P<0.03). We conclude that in this infant rat model of pneumococcal meningitis interference of the EEA and NMDA pathway using DM causes ataxia, attenuates epileptic seizures and increases hippocampal apoptosis, but is not effective in protecting the brain from injury.
Resumo:
Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.
Resumo:
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.
Resumo:
Aurintricarboxylic acid (ATA), an inhibitor of endonuclease activity and other protein–nucleic acid interactions, blocks apoptosis in several cell types and prevents delayed death of hippocampal pyramidal CA1 neurons induced by transient global ischemia. Global ischemia in rats and gerbils induces down-regulation of GluR2 mRNA and increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced Ca2+ influx in CA1 before neurodegeneration. This result and neuroprotection by antagonists of AMPA receptors suggests that formation of AMPA receptors lacking GluR2, and therefore Ca2+ permeable, leads to excessive Ca2+ influx in response to endogenous glutamate; the resulting delayed neuronal death in CA1 exhibits many characteristics of apoptosis. In this study, we examined the effects of ATA on expression of mRNAs encoding glutamate receptor subunits in gerbil hippocampus after global ischemia. Administration of ATA by injection into the right cerebral ventricle 1 h before (but not 6 h after) bilateral carotid occlusion prevented the ischemia-induced decrease in GluR2 mRNA expression and the delayed neurodegeneration. These findings suggest that ATA is neuroprotective in ischemia by blocking the transcriptional changes leading to down-regulation of GluR2, rather than by simply blocking endonucleases, which presumably act later after Ca2+ influx initiates apoptosis. Maintaining formation of Ca2+ impermeable, GluR2 containing AMPA receptors could prevent delayed death of CA1 neurons after transient global ischemia, and block of GluR2 down-regulation may provide a further strategy for neuroprotection.
Resumo:
Two regioisomers with C3 or D3 symmetry of water-soluble carboxylic acid C60 derivatives, containing three malonic acid groups per molecule, were synthesized and found to be equipotent free radical scavengers in solution as assessed by EPR analysis. Both compounds also inhibited the excitotoxic death of cultured cortical neurons induced by exposure to N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or oxygen-glucose deprivation, but the C3 regioisomer was more effective than the D3 regioisomer, possibly reflecting its polar nature and attendant greater ability to enter lipid membranes. At 100 μM, the C3 derivative fully blocked even rapidly triggered, NMDA receptor-mediated toxicity, a form of toxicity with limited sensitivity to all other classes of free radical scavengers we have tested. The C3 derivative also reduced apoptotic neuronal death induced by either serum deprivation or exposure to Aβ1–42 protein. Furthermore, continuous infusion of the C3 derivative in a transgenic mouse carrying the human mutant (G93A) superoxide dismutase gene responsible for a form of familial amyotrophic lateral sclerosis, delayed both death and functional deterioration. These data suggest that polar carboxylic acid C60 derivatives may have attractive therapeutic properties in several acute or chronic neurodegenerative diseases.
Resumo:
Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20–30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.
Neuroprotective activity of a new class of steroidal inhibitors of the N-methyl-d-aspartate receptor
Resumo:
Release of the excitatory neurotransmitter glutamate and the excessive stimulation of N-methyl-d-aspartate (NMDA)-type glutamate receptors is thought to be responsible for much of the neuronal death that occurs following focal hypoxia-ischemia in the central nervous system. Our laboratory has identified endogenous sulfated steroids that potentiate or inhibit NMDA-induced currents. Here we report that 3α-ol-5β-pregnan-20-one hemisuccinate (3α5βHS), a synthetic homologue of naturally occurring pregnanolone sulfate, inhibits NMDA-induced currents and cell death in primary cultures of rat hippocampal neurons. 3α5βHS exhibits sedative, anticonvulsant, and analgesic properties consistent with an action at NMDA-type glutamate receptors. Intravenous administration of 3α5βHS to rats (at a nonsedating dose) following focal cerebral ischemia induced by middle cerebral artery occlusion significantly reduces cortical and subcortical infarct size. The in vitro and in vivo neuroprotective effects of 3α5βHS demonstrate that this steroid represents a new class of potentially useful therapeutic agents for the treatment of stroke and certain neurodegenerative diseases that involve over activation of NMDA receptors.
Resumo:
Neurons undergoing targeted photolytic cell death degenerate by apoptosis. Clonal, multipotent neural precursor cells were transplanted into regions of adult mouse neocortex undergoing selective degeneration of layer II/III pyramidal neurons via targeted photolysis. These precursors integrated into the regions of selective neuronal death; 15 ± 7% differentiated into neurons with many characteristics of the degenerated pyramidal neurons. They extended axons and dendrites and established afferent synaptic contacts. In intact and kainic acid-lesioned control adult neocortex, transplanted precursors differentiated exclusively into glia. These results suggest that the microenvironmental alterations produced by this synchronous apoptotic neuronal degeneration in adult neocortex induced multipotent neural precursors to undergo neuronal differentiation which ordinarily occurs only during embryonic corticogenesis. Studying the effects of this defined microenvironmental perturbation on the differentiation of clonal neural precursors may facilitate identification of factors involved in commitment and differentiation during normal development. Because photolytic degeneration simulates some mechanisms underlying apoptotic neurodegenerative diseases, these results also suggest the possibility of neural precursor transplantation as a potential cell replacement or molecular support therapy for some diseases of neocortex, even in the adult.
Resumo:
Evidence from postmortem studies suggest an involvement of oxidative stress in the degeneration of dopaminergic neurons in Parkinson disease (PD) that have recently been shown to die by apoptosis, but the relationship between oxidative stress and apoptosis has not yet been elucidated. Activation of the transcription factor NF-κB is associated with oxidative stress-induced apoptosis in several nonneuronal in vitro models. To investigate whether it may play a role in PD, we looked for the translocation of NF-κB from the cytoplasm to the nucleus, evidence of its activation, in melanized neurons in the mesencephalon of postmortem human brain from five patients with idiopathic PD and seven matched control subjects. In PD patients, the proportion of dopaminergic neurons with immunoreactive NF-κB in their nuclei was more than 70-fold that in control subjects. A possible relationship between the nuclear localization of NF-κB in mesencephalic neurons of PD patients and oxidative stress in such neurons has been shown in vitro with primary cultures of rat mesencephalon, where translocation of NF-κB is preceded by a transient production of free radicals during apoptosis induced by activation of the sphingomyelin-dependent signaling pathway with C2-ceramide. The data suggest that this oxidant-mediated apoptogenic transduction pathway may play a role in the mechanism of neuronal death in PD.
Resumo:
The extracellular glutamate concentration ([glu]o) rises during cerebral ischemia, reaching levels capable of inducing delayed neuronal death. The mechanisms underlying this glutamate accumulation remain controversial. We used N-methyl-d-aspartate receptors on CA3 pyramidal neurons as a real-time, on-site, glutamate sensor to identify the source of glutamate release in an in vitro model of ischemia. Using glutamate and l-trans-pyrrolidine-2,4-dicarboxylic acid (tPDC) as substrates and dl-threo-β-benzyloxyaspartate (TBOA) as an inhibitor of glutamate transporters, we demonstrate that energy deprivation decreases net glutamate uptake within 2–3 min and later promotes reverse glutamate transport. This process accounts for up to 50% of the glutamate accumulation during energy deprivation. Enhanced action potential-independent vesicular release also contributes to the increase in [glu]o, by ≈50%, but only once glutamate uptake is inhibited. These results indicate that a significant rise in [glu]o already occurs during the first minutes of energy deprivation and is the consequence of reduced uptake and increased vesicular and nonvesicular release of glutamate.
Resumo:
Sandhoff disease is a lysosomal storage disorder characterized by the absence of β-hexosaminidase and storage of GM2 ganglioside and related glycolipids in the central nervous system. The glycolipid storage causes severe neurodegeneration through a poorly understood pathogenic mechanism. In symptomatic Sandhoff disease mice, apoptotic neuronal cell death was prominent in the caudal regions of the brain. cDNA microarray analysis to monitor gene expression during neuronal cell death revealed an upregulation of genes related to an inflammatory process dominated by activated microglia. Activated microglial expansion, based on gene expression and histologic analysis, was found to precede massive neuronal death. Extensive microglia activation also was detected in a human case of Sandhoff disease. Bone marrow transplantation of Sandhoff disease mice suppressed both the explosive expansion of activated microglia and the neuronal cell death without detectable decreases in neuronal GM2 ganglioside storage. These results suggest a mechanism of neurodegeneration that includes a vigorous inflammatory response as an important component. Thus, this lysosomal storage disease has parallels to other neurodegenerative disorders, such as Alzheimer's and prion diseases, where inflammatory processes are believed to participate directly in neuronal cell death.