971 resultados para neuromuscular control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J Strength Cond Res 26(12): 3335-3344, 2012-This study aimed at comparing the effects of strength and power training (ST and PT) regimens on neuromuscular adaptations and changes on vertical jump performance, kinetics, and kinematics parameters. Forty physically active men (178.2 +/- 7.0 cm; 75.1 +/- 8.6 kg; 23.6 +/- 3.5 years) with at least 2 years of ST experience were assigned to an ST (n = 14), a PT (n = 14), or a control group (C; n = 12). The training programs were performed during 8 weeks, 3 times per week. Dynamic and isometric maximum strength, cross-sectional area, and muscle activation were assessed before and after the experimental period. Squat jump (SJ) and countermovement jump (CMJ) performance, kinetics, and kinematics parameters were also assessed. Dynamic maximum strength increased similarly (p < 0.05) for the ST (22.8%) and PT (16.6%) groups. The maximum voluntary isometric contraction increased for the ST and PT groups (p < 0.05) in the posttraining assessments. There was a main time effect for muscle fiber cross-sectional area (p < 0.05), but there were no changes in muscle activation. The SJ height increased, after ST and PT, because of a faster concentric phase and a higher rate of force development (p < 0.05). The CMJ height increased only after PT (p < 0.05), but there were no significant changes in its kinetics and kinematics parameters. In conclusion, neuromuscular adaptations were similar between the training groups. The PT seemed more effective than the ST in increasing jumping performance, but neither the ST nor the PT was able to affect the SJ and the CMJ movement pattern (e.g., timing and sequencing of joint extension initiation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare the neuromuscular adaptations produced by strength-training (ST) and power-training (PT) regimens in older individuals. Participants were balanced by quadriceps cross-sectional area (CSA) and leg-press 1-repetition maximum and randomly assigned to an ST group (n = 14; 63.6 +/- 4.0 yr, 79.7 +/- 17.2 kg, and 163.9 +/- 9.8 cm), a PT group (n = 16; 64.9 +/- 3.9 yr. 63.9 +/- 11.9 kg, and 157.4 +/- 7.7 cm), or a control group (n = 13; 63.0 +/- 4.0 yr, 67.2 +/- 10.8 kg, and 159.8 +/- 6.8 cm). ST and PT were equally effective in increasing (a) maximum dynamic and isometric strength (p < .05), (b) increasing quadriceps muscle CSA (p < .05), and (c) decreasing electrical mechanical delay of the vastus lateralis muscle (p < .05). There were no significant changes in neuromuscular activation after training. The novel finding of the current study is that PT seems to be an attractive alternative to regular ST to maintain and improve muscle mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lucia jig is a technique that promotes neuromuscular reprogramming of the masticatory system and allows the stabilization of the mandible without the interference of dental contacts, maintaining the mandible position in harmonic condition with the musculature in normal subjects or in patients with temporomandibular dysfunction (TMD). This study aimed to electromyographically analyze the activity (RMS) of the masseter and temporal muscles in normal subjects (control group) during the use of an anterior programming device, the Lucia jig, in place for 0, 5, 10, 20 and 30 minutes to demonstrate its effect on the stomatognathic system. Forty-two healthy dentate individuals (aged 21 to 40 years) with normal occlusion and without parafunctional habits or ternporomandibular dysfunction (RDC/TMD) were evaluated on the basis of the electromyographic activity of the masseter and temporal muscles before placement of a neuromuscular re-programming device, the Lucia jig, on the upper central incisors. There were no statistically significant differences (p < 0.05) in the electromyographic activity of the masticatory muscles in the different time periods. The Lucia jig changed the electromyographic activity by promoting a neuromuscular reprogramming. In most of the time periods, it decreased the activation of the masticatory muscles, showing that this device has wide applicability in dentistry. The use of a Lucia jig over 0, 5, 10, 15, 20 and 30 minutes did not promote any statistically significant increase in muscle activity despite differences in the data, thus showing that this intra-oral device can be used in dentistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Menezes CC, Peceguini LAM, Silva ED, Simoes CM Use of Sugammadex after Neostigmine Incomplete Reversal of Rocuronium-Induced Neuromuscular Blockade. Background and objectives: Neuromuscular blockers (NMB) have been used for more than half of a century in anesthesia and have always been a challenge for anesthesiologists. Until recently, the reversal of nondepolarizing neuromuscular blockers had only one option: the use of anticholinesterase agents. However, in some situations, such as deep neuromuscular blockade after high doses of relaxant, the use of anticholinesterase agents does not allow adequate reversal of neuromuscular blockade: Recently, sugammadex, a gamma-cyclodextrin, proved to be highly effective for reversal of NMB induced by steroidal agents. Case report: A female patient who underwent an emergency exploratory laparotomy after rapid sequence intubation with rocuronium 1.2 mg.kg(-1). At the end of surgery, the pat ent received neostigmine reversal of NMB. However, neuromuscular junction monitoring did not show the expected recovery, presenting residual paralysis. Sugammadex 2 mg.kg(-1) was used and the patient had complete reversal of NMB in just 2 minutes time. Conclusion: Adequate recovery of residual neuromuscular blockade is required for full control of the pharynx and respiratory functions in order to prevent complications. Adequate recovery can only be obtained by neuromuscular junction monitoring with TOF ratio greater than 0.9. Often, the reversal of NMB with anticholinesterase drugs may not be completely reversed. However, in the absence of objective monitoring this diagnosis is not possible. The case illustrates the diagnosis of residual NMB even after reversal with anticholinesterase agents, resolved with the administration of sugammadex, a safe alternative to reverse the NMB induced by steroidal non-depolarizing agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Surfing is a sport that has become considerably popular, which increased interest in research about the aspects that can influence on the performance of these athletes, such as injuries, aerobic fitness and reaction time. Due to the ever-changing environment and high instability required for surfing, the surfers must develop some neuromuscular skills (agility, balance, muscle strength and flexibility) to acquire better performance in this modality. Nevertheless, there are still few scientific studies concerned about the investigation of these motor skills in surfing. Objective: The aim of this study was to evaluate the balance control in surfers compared to practitioners of other physical activities. Methods: Participants remained on a force platform while performing tasks involving visual deprivation (eyes open or closed) and somatosensory disturbance (steady surface or use of foam), with covariation of experimental conditions. The following variables were analyzed: speed and root mean square (RMS) displacement of the center of pressure in the anteroposterior (AP) and mediolateral (ML) directions. Results: The results showed no difference between groups during the experimental conditions, that is to say, both surfers and the control group varied over the conditions of eyes closed and on foam. Conclusion: Although surfing requires the surfer to have great balance control, the results did not reveal a relationship between this sport and better performance in balance control. However, we must consider the small sample size and the fact that this sport requires dynamic balance, while the study evaluated static balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Neuromuscular electrostimulation has become a promising issue in cardiovascular rehabilitation. However there are few articles published in the literature regarding neuromuscular electrostimulation in patients with heart failure during hospital stay. Methods: This is a randomized controlled pilot trial that aimed to investigate the effect of neuromuscular electrostimulation in the walked distance by the six-minute walking test in 30 patients admitted to ward for heart failure treatment in a tertiary cardiology hospital. Patients in the intervention group performed a conventional rehabilitation and neuromuscular electrostimulation. Patients underwent 60 minutes of electrostimulation (wave frequency was 20 Hz, pulse duration of 20 us) two times a day for consecutive days until hospital discharge. Results: The walked distance in the six-minute walking test improved 75% in the electrostimulation group (from 379.7 +/- 43.5 to 372.9 +/- 46.9 meters to controls and from 372.9 +/- 62.4 to 500 +/- 68 meters to electrostimulation, p<0.001). On the other hand, the walked distance in the control group did not change. Conclusion: The neuromuscular electrostimulation group showed greater improvement in the walked distance in the six-minute walking test in patients admitted to ward for compensation of heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis analyze a subject of renewed interest in bioengineering, the research and analysis of exercise parameters that maximize the neuromuscular and cardiovascular involvement in vibration treatment. The research activity was inspired by the increasing use of device able to provide localized or whole body vibration (WBV). In particular, the focus was placed on the vibrating platform and the effect that the vibrations have on the neuromuscular system and cardiovascular system. The aim of the thesis is to evaluate the effectiveness and efficiency of vibration applied to the entire body, in particular, it was investigated the effect of WBV on: 1) Oxygen consumption during static and dynamic squat; 2) Resonant frequency of the muscle groups of the lower limbs; 3) Oxygen consumption and electromyographic signals during static and dynamic squat. In the first three chapters are explained the state of the art concerning vibration treatments, the effects of vibration applied to the entire body, with the explanation of the basic mechanisms (Tonic Vibration Reflex, TVR) and the neuromuscular system, with particular attention to the skeletal muscles and the stretch reflex. In the fourth chapter is illustrated the set-up used for the experiments and the software, implemented in LabWindows in order to control the platform and acquire the electromyographic signal. In the fifth chapter were exposed experiments undertaken during the PhD years. In particular, the analysis of Whole Body Vibration effect on neurological and cardiovascular systems showed interesting results. The results indicate that the static squat with WBV produced higher neuromuscular and cardiorespiratory system activation for exercise duration <60 sec. Otherwise, if the single bout duration was higher than 60 sec, the greater cardiorespiratory system activation was achieved during the dynamic squat with WBV while higher neuromuscular activation was still obtained with the static exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Electrical stimulation of the P6 acupuncture point reduces the incidence of postoperative nausea and vomiting (PONV). Neuromuscular blockade during general anesthesia can be monitored with electrical peripheral nerve stimulation at the wrist. The authors tested the effect of neuromuscular monitoring over the P6 acupuncture point on the reduction of PONV. METHODS: In this prospective, double-blinded, randomized control trial, the authors investigated, with institutional review board approval and informed consent, 220 women undergoing elective laparoscopic surgery anesthetized with fentanyl, sevoflurane, and rocuronium. During anesthesia, neuromuscular blockade was monitored by a conventional nerve stimulator at a frequency of 1 Hz over the ulnar nerve (n = 110, control group) or over the median nerve (n = 110, P6 group) stimulating at the P6 acupuncture point at the same time. The authors evaluated the incidence of nausea and vomiting during the first 24 h. RESULTS: No differences in demographic and morphometric data were found between both groups. The 24-h incidence of PONV was 45% in the P6 acupuncture group versus 61% in the control group (P = 0.022). Nausea decreased from 56% in the control group to 40% in the P6 group (P = 0.022), but emesis decreased only from 28% to 23% (P = 0.439). Nausea decreased substantially during the first 6 h of the observation period (P = 0.009). Fewer subjects in the acupuncture group required ondansetron as rescue therapy (27% vs. 39%; P = 0.086). CONCLUSION: Intraoperative P6 acupuncture point stimulation with a conventional nerve stimulator during surgery significantly reduced the incidence of PONV over 24 h. The efficacy of P6 stimulation is similar to that of commonly used antiemetic drugs in the prevention of PONV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early intervention and intensive therapy improve the outcome of neuromuscular rehabilitation. There are indications that where a patient is motivated and premeditates their movement, the recovery is more effective. Therefore, a strategy for patient-cooperative control of rehabilitation devices for upper extremities is proposed and evaluated. The strategy is based on the minimal intervention principle allowing an efficient exploitation of task space redundancies and resulting in user-driven movement trajectories. The patient's effort is taken into consideration by enabling the machine to comply with forces exerted by the user. The interaction is enhanced through a multimodal display and a virtually generated environment that includes haptic, visual and sound modalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently discovered aging-dependent large accumulation of point mutations in the human fibroblast mtDNA control region raised the question of their occurrence in postmitotic tissues. In the present work, analysis of biopsied or autopsied human skeletal muscle revealed the absence or only minimal presence of those mutations. By contrast, surprisingly, most of 26 individuals 53 to 92 years old, without a known history of neuromuscular disease, exhibited at mtDNA replication control sites in muscle an accumulation of two new point mutations, i.e., A189G and T408A, which were absent or marginally present in 19 individuals younger than 34 years. These two mutations were not found in fibroblasts from 22 subjects 64 to 101 years of age (T408A), or were present only in three subjects in very low amounts (A189G). Furthermore, in several older individuals exhibiting an accumulation in muscle of one or both of these mutations, they were nearly absent in other tissues, whereas the most frequent fibroblast-specific mutation (T414G) was present in skin, but not in muscle. Among eight additional individuals exhibiting partial denervation of their biopsied muscle, four subjects >80 years old had accumulated the two muscle-specific point mutations, which were, conversely, present at only very low levels in four subjects ≤40 years old. The striking tissue specificity of the muscle mtDNA mutations detected here and their mapping at critical sites for mtDNA replication strongly point to the involvement of a specific mutagenic machinery and to the functional relevance of these mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that long-term changes in synaptic structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing body of evidence supports the involvement of the microRNA (miRNA) pathway in these processes. We have used the Drosophila neuromuscular junction (NMJ) as a model synapse to characterize activity-regulated miRNAs and their important mRNA targets. Here, we have identified five neuronal miRNAs (miRs-1, -8, -289, -314, and -958) that are significantly downregulated in response to neuronal activity. Furthermore we have discovered that neuronal misexpression of three of these miRNAs (miR-8, -289, and -958) is capable of suppressing new synaptic growth in response to activity suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Putative targets of the activity-regulated miRNAs-8 and -289 are significantly enriched in clusters mapping to functional processes including axon development, pathfinding, and axon growth. We demonstrate that activity-regulated miR-8 regulates the 3'UTR of wingless, a presynaptic regulatory protein involved in the process of activity-dependent axon terminal growth. Additionally, we show that the 3'UTR of the protein tyrosine phosophatase leukocyte antengen related (lar), a protein required for axon guidance and synaptic growth, is regulated by activity-regulated miRNAs-8, -289, and -958 in vitro. Both wg and lar were identified as relevant putative targets for co-regulation based through our functional cluster analysis. One putative target of miR-289 is the Ca2+/calmodulin-dependent protein kinase II (CamKII). While CamKII is not predicted as a target for co-regulation by multiple activity-regulated miRNAs we identified it as an especially pertinent target for analysis in our system for two reasons. First, CamKII has an extremely well characterized role in postsynaptic plasticity, but its presynaptic role is less well characterized and bears further analysis. Second, local translation of CamKII mRNA is regulated in part by the miRNA pathway in an activity-dependent manner in dendrites. We find that the CamKII 3'UTR is regulated by miR-289 in-vitro and this regulation is alleviated by mutating the `seed region' of the miR-289 binding site within the CamKII 3'UTR. Furthermore, we demonstrate a requirement for local translation of CamKII in motoneurons in the process of activity-regulated axon terminal growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion - supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.