904 resultados para neuroanatomical brain changes


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Color light therapy is a therapeutic method in complementary medicine. In color therapy, light of two contrasting colors is often applied in a sequential order. The aim of this study was to investigate possible physiological effects, i.e., changes in the blood volume and oxygenation in the brain and calf muscle of healthy subjects who were exposed to red and blue light in sequential order. The hypothesis was that if a subject is first exposed to blue and then red light, the effect of the red light will be enhanced due to the contrastingly different characteristics of the two colors. The same was expected for blue light, if first exposing a subject to red and then to blue light. Twelve healthy volunteers (six male, six female) were measured twice on two different days by near-infrared spectroscopy during exposure to colored light. Two sequences of colored light were applied in a controlled, randomized, crossover design: first blue, then red, and vice versa. For the brain and muscle, the results showed no significant differences in blood volume and oxygenation between the two sequences, and a high interindividual physiological variability. Thus, the hypothesis had to be rejected. Comparing these data to results from a previous study, where subjects were exposed to blue and red light without sequential color changes, shows that the results of the current study appear to be similar to those of red light exposure. This may indicate that the exposure to red light was preponderant and thus effects of blue light were outweighed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2 in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Purpose: To further evaluate the use of microbeam irradiation (MBI) as a potential means of non-invasive brain tumor treatment by investigating the induction of a bystander effect in non-irradiated tissue. Methods: Adult rats were irradiated with 35 or 350 Gy at the European Synchotron Research Facility (ESRF), using homogenous (broad beam) irradiation (HI) or a high energy microbeam delivered to the right brain hemisphere only. The proteome of the frontal lobes were then analyzed using two-dimensional electrophoresis (2-DE) and mass spectrometry. Results: HI resulted in proteomic responses indicative of tumourigenesis; increased albumin, aconitase and triosphosphate isomerase (TPI), and decreased dihydrolipoyldehydrogenase (DLD). The MBI bystander effect proteomic changes were indicative of reactive oxygen species mediated apoptosis; reduced TPI, prohibitin and tubulin and increased glial fibrillary acidic protein (GFAP). These potentially anti-tumourigenic apoptotic proteomic changes are also associated with neurodegeneration. However the bystander effect also increased heat shock protein (HSP) 71 turnover. HSP 71 is known to protect against all of the neurological disorders characterized by the bystander effect proteome changes. Conclusions: These results indicate that the collective interaction of these MBI-induced bystander effect proteins and their mediation by HSP 71, may confer a protective effect which now warrants additional experimental attention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of the brain to adjust to changing environments and to recover from damage rests on its remarkable capacity to adapt through plastic changes of underlying neural networks. We show here with an eye movement paradigm that a lifetime of plastic changes can be extended to several hours by repeated applications of theta burst transcranial magnetic stimulation to the frontal eye field of the human cortex. The results suggest that repeated application of the same stimulation protocol consolidates short-lived plasticity into long-lasting changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Perfusion CT (P-CT) is used for acute stroke management, not, however, for evaluating epilepsy. To test the hypothesis that P-CT may identify patients with increased regional cerebral blood flow during subtle status epilepticus (SSE), we compared P-CT in SSE to different postictal conditions. METHODS: Fifteen patients (mean age 47 years, range 21-74) underwent P-CT immediately after evaluation in our emergency room. Asymmetry indices between affected and unaffected hemispheres were calculated for regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and mean transit time (MTT). Regional perfusion changes were compared to EEG findings. RESULTS: Three patients in subtle status epilepticus (group 1) had increased regional perfusion with electro-clinical correlate. Six patients showed postictal slowing on EEG corresponding to an area of regional hypoperfusion (group 2). CT and EEG were normal in six patients with a first epileptic seizure (group 3). Cluster analysis of asymmetry indices separated SSE from the other two groups in all three parameters, while rCBF helped to distinguish between chronic focal epilepsies and single events. CONCLUSION: Preliminary results indicate that P-CT may help to identify patients with SSE during emergency workup. This technique provides important information to neurologists or emergency physicians in the difficult clinical differential diagnosis of altered mental status due to subtle status epilepticus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adverse outcome in bacterial meningitis is associated with the breakdown of the blood-brain barrier (BBB). Matrix-metalloproteinases (MMPs) facilitate this process by degradation of components of the BBB. This in turn results in acute complications of bacterial meningitis including edema formation, increased intracranial pressure and subsequent ischemia. We determined the parenchymal balance of MMP-9 and TIMP-1 (tissue inhibitor of MMP) and the structural integrity of the BBB in relation to cortical damage in an infant rat model of pneumococcal meningitis. The data demonstrate that the extent of cortical damage is significantly associated with parenchymal gelatinolytic activity and collagen type IV degradation. The increased gelatinolysis was found to be associated with a brain parenchymal imbalance of MMP-9/TIMP-1. These findings provide support to the concept that MMPs mediated disruption of the BBB contributes to the pathogenesis of bacterial meningitis and that protection of the vascular unit may have neuroprotective potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Following trauma, imaging of brain stem lesions is often inconclusive. In a man who suffered a lethal accident, postmortem MR diffusion tensor (DT) imaging of the brain and neuropathologic examination were performed. DT imaging showed a disorganization of fibers in the brain stem that was not found in 2 controls and corresponded to changes on neuropathologic correlation. Diffusion tensor imaging provides an insight into the organization of myelinated structures of the CNS, potentially allowing diagnosis of traumatic fiber tract rupture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tight homeostatic control of brain amino acids (AA) depends on transport by solute carrier family proteins expressed by the blood-brain barrier (BBB) microvascular endothelial cells (BMEC). To characterize the mouse BMEC transcriptome and probe culture-induced changes, microarray analyses of platelet endothelial cell adhesion molecule-1-positive (PECAM1(+)) endothelial cells (ppMBMECs) were compared with primary MBMECs (pMBMEC) cultured in the presence or absence of glial cells and with b.End5 endothelioma cell line. Selected cell marker and AA transporter mRNA levels were further verified by reverse transcription real-time PCR. Regardless of glial coculture, expression of a large subset of genes was strongly altered by a brief culture step. This is consistent with the known dependence of BMECs on in vivo interactions to maintain physiologic functions, for example, tight barrier formation, and their consequent dedifferentiation in culture. Seven (4F2hc, Lat1, Taut, Snat3, Snat5, Xpct, and Cat1) of nine AA transporter mRNAs highly expressed in freshly isolated ppMBMECs were strongly downregulated for all cultures and two (Snat2 and Eaat3) were variably regulated. In contrast, five AA transporter mRNAs with low expression in ppMBMECs, including y(+)Lat2, xCT, and Snat1, were upregulated by culture. We hypothesized that the AA transporters highly expressed in ppMBMECs and downregulated in culture have a major in vivo function for BBB transendothelial transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study explored transient changes in EEG microstates and spatial Omega complexity associated with changes in multistable perception. 21-channel EEG was recorded from 13 healthy subjects viewing an alternating dot pattern that induced illusory motion with ambiguous direction. Baseline epochs with stable motion direction were compared to epochs immediately preceding stimuli that were perceived with changed motion direction ('reference stimuli'). About 750 ms before reference stimuli, Omega complexity decreased as compared to baseline, and two of four classes of EEG microstates changed their probability of occurrence. About 300 ms before reference stimuli, Omega complexity increased and the previous deviations of EEG microstates were reversed. Given earlier results on Omega complexity and microstates, these sub-second EEG changes might parallel longer-lasting fluctuations in vigilance. Assumedly, the discontinuities of illusory motion thus occur during sub-second dips in arousal, and the following reconstruction of the illusion coincides with a state of relative over-arousal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Map landscape-based segmentation of the sequences of momentary potential distribution maps (42-channel recordings) into brain microstates during spontaneous brain activity was used to study brain electric field spatial effects of single doses of piracetam (2.9, 4.8, and 9.6 g Nootropil® UCB and placebo) in a double-blind study of five normal young volunteers. Four 15-second epochs were analyzed from each subject and drug condition. The most prominent class of microstates (covering 49% of the time) consisted of potential maps with a generally anterior-posterior field orientation. The map orientation of this microstate class showed an increasing clockwise deviation from the placebo condition with increasing drug doses (Fisher's probability product, p < 0.014). The results of this study suggest the use of microstate segmentation analysis for the assessment of central effects of medication in spontaneous multichannel electroencephalographic data, as a complementary approach to frequency-domain analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron microscopy (EM) allows for the simultaneous visualization of all tissue components at high resolution. However, the extent to which conventional aldehyde fixation and ethanol dehydration of the tissue alter the fine structure of cells and organelles, thereby preventing detection of subtle structural changes induced by an experiment, has remained an issue. Attempts have been made to rapidly freeze tissue to preserve native ultrastructure. Shock-freezing of living tissue under high pressure (high-pressure freezing, HPF) followed by cryosubstitution of the tissue water avoids aldehyde fixation and dehydration in ethanol; the tissue water is immobilized in ∼50 ms, and a close-to-native fine structure of cells, organelles and molecules is preserved. Here we describe a protocol for HPF that is useful to monitor ultrastructural changes associated with functional changes at synapses in the brain but can be applied to many other tissues as well. The procedure requires a high-pressure freezer and takes a minimum of 7 d but can be paused at several points.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The outcome of light-based therapeutic approaches depends on light propagation in biological tissues, which is governed by their optical properties. The objective of this study was to quantify optical properties of brain tissue in vivo and postmortem and assess changes due to tissue handling postmortem. The study was carried out on eight female New Zealand white rabbits. The local fluence rate was measured in the VIS/NIR range in the brain in vivo, just postmortem, and after six weeks’ storage of the head at −20∘C or in 10% formaldehyde solution. Only minimal changes in the effective attenuation coefficient μeff were observed for two methods of sacrifice, exsanguination or injection of KCl. Under all tissue conditions, μeff decreased with increasing wavelengths. After long-term storage for six weeks at −20∘C, μeff decreased, on average, by 15 to 25% at all wavelengths, while it increased by 5 to 15% at all wavelengths after storage in formaldehyde. We demonstrated that μeff was not very sensitive to the method of animal sacrifice, that tissue freezing significantly altered tissue optical properties, and that formalin fixation might affect the tissue’s optical properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young females, twenty right handed participants were recruited for the study and assigned to a practice or a control group carefully matched by their general cognitive ability scores. After the first scan, the practice group played ‘Professor Layton and The Pandora's Box’ 4 h per week during four weeks. A second scan was obtained at the end of practice and intelligence was measured again. Image analyses revealed gray and white matter changes in the practice group. Gray matter changes theoretically relevant for intelligence were observed for the practice group mainly in frontal clusters (Brodmann areas 9 and 10) and also in smaller parietal and temporal regions. White matter findings were focused in the hippocampal cingulum and the inferior longitudinal fasciculus. These gray and white matter changes presumably induced by practice did not interact with intelligence tests' scores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diffusion of molecules in brain extracellular space is constrained by two macroscopic parameters, tortuosity factor λ and volume fraction α. Recent studies in brain slices show that when osmolarity is reduced, λ increases while α decreases. In contrast, with increased osmolarity, α increases, but λ attains a plateau. Using homogenization theory and a variety of lattice models, we found that the plateau behavior of λ can be explained if the shape of brain cells changes nonuniformly during the shrinking or swelling induced by osmotic challenge. The nonuniform cellular shrinkage creates residual extracellular space that temporarily traps diffusing molecules, thus impeding the macroscopic diffusion. The paper also discusses the definition of tortuosity and its independence of the measurement frame of reference.