900 resultados para network-on-chip,deadlock, message-dependent-deadlock,NoC
On-chip switching of a silicon nitride micro-ring resonator based on digital microfluidics platform.
Resumo:
We demonstrate the switching of a silicon nitride micro ring resonator (MRR) by using digital microfluidics (DMF). Our platform allows driving micro-droplets on-chip, providing control over the effective refractive index at the vicinity of the resonator and thus facilitating the manipulation of the transmission spectrum of the MRR. The device is fabricated using a process that is compatible with high-throughput silicon fabrication techniques with buried highly doped silicon electrodes. This platform can be extended towards controlling arrays of micro optical devices using minute amounts of liquid droplets. Such an integration of DMF and optical resonators on chip can be used in variety of applications, ranging from biosensing and kinetics to tunable filtering on chip.
Resumo:
We demonstrate a nanoscale mode selector supporting the propagation of the first antisymmetric mode of a silicon waveguide. The mode selector is based on embedding a short section of PhC into the waveguide. On the basis of the difference in k-vector distribution between orthogonal waveguide modes, the PhC can be designed to have a band gap for the fundamental mode, while allowing the transmission of the first antisymmetric mode. The device was tested by directly measuring the modal content before and after the PhC section using a near field scanning optical microscope. Extinction ratio was estimated to be approximately 23 dB. Finally, we provide numerical simulations demonstrating strong coupling of the antisymmetric mode to metallic nanotips. On the basis of the results, we believe that the mode selector may become an important building block in the realization of on chip nanofocusing devices.
Resumo:
We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.
Resumo:
We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.
Resumo:
We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.
Resumo:
We demonstrate an integrated on-chip plasmonic enhanced Schottky detector for telecom wavelengths based on the internal photoemission process. This CMOS compatible device may serve as a promising alternative to the Si-Ge detectors. © 2012 OSA.
Resumo:
We demonstrate the on-chip nanoscale focusing of surface plasmons in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. Enhancing light matter interactions is discussed. © 2012 OSA.
Resumo:
We investigate numerically and experimentally the on-chip nanoscale focusing of surface plasmon polaritons (SPPs) in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. © 2011 IEEE.
Resumo:
We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide © 2011 OSA.
Resumo:
We demonstrate the on-chip nanoscale focusing of surface plasmons in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. Enhancing light matter interactions is discussed. © 2011 Optical Society of America.
Resumo:
We demonstrate an integrated on-chip plasmonic enhanced Schottky detector for telecom wavelengths based on the internal photoemission process. This CMOS compatible device may serve as a promising alternative to the Si-Ge detectors. © 2011 Optical Society of America.
Resumo:
We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide. © 2011 Optical Society of America.
Resumo:
We demonstrate the tunability of a silicon nitride micro-resonator using the concept of Digital Microfluidics. Our system allows driving micro-droplets on-chip, enabling the control of the effective refractive index at the vicinity of the resonator. © 2010 OSA/FiO/LS 2010.
Resumo:
We investigate numerically and experimentally the on-chip nanoscale focusing of surface plasmon polaritons (SPPs) in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. © 2010 Optical Society of America.