978 resultados para network protocols


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The number of nodes has large impact on the performance, lifetime and cost of wireless sensor network (WSN). It is difficult to determine, because it depends on many factors, such as the network protocols, the collaborative signal processing (CSP) algorithms, etc. A mathematical model is proposed in this paper to calculate the number based on the required working time. It can be used in the general situation by treating these factors as the parameters of energy consumption. © 2004 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research work, a new routing protocol for Opportunistic Networks is presented. The proposed protocol is called PSONET (PSO for Opportunistic Networks) since the proposal uses a hybrid system composed of a Particle Swarm Optimization algorithm (PSO). The main motivation for using the PSO is to take advantage of its search based on individuals and their learning adaptation. The PSONET uses the Particle Swarm Optimization technique to drive the network traffic through of a good subset of forwarders messages. The PSONET analyzes network communication conditions, detecting whether each node has sparse or dense connections and thus make better decisions about routing messages. The PSONET protocol is compared with the Epidemic and PROPHET protocols in three different scenarios of mobility: a mobility model based in activities, which simulates the everyday life of people in their work activities, leisure and rest; a mobility model based on a community of people, which simulates a group of people in their communities, which eventually will contact other people who may or may not be part of your community, to exchange information; and a random mobility pattern, which simulates a scenario divided into communities where people choose a destination at random, and based on the restriction map, move to this destination using the shortest path. The simulation results, obtained through The ONE simulator, show that in scenarios where the mobility model based on a community of people and also where the mobility model is random, the PSONET protocol achieves a higher messages delivery rate and a lower replication messages compared with the Epidemic and PROPHET protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy efficient policies are being applied to network protocols, devices and classical network management systems. Researchers have already studied in depth each of those fields, including for instance a long monitoring processes of various number of individual ICT equipment from where power models are constructed. With the development of smart meters and emerging protocols such as SNMP and NETCONF, currently there is an open field to couple the power models, translated to the expected behavior, with the realtime energy measurements. The goal is to derive a comparison on the power data between both of the processes in the direction of detection for possible deviations on the expected results. The logical assumption is that a fault in the usage of a particular device will not only increase its own energy usage, but also may cause additional consumption on the other devices part of the network. A platform is developed to monitor and analyze the retrieved power data of a simulated enterprise ICT infrastructure. Moreover, smart algorithms are developed which are aware of the different states that are occurring on each device during their typical use phase, as well as to detect and isolate possible anomalies. The produced results are obtained and validated with the use of Cisco switches and routers, Dell Precision stations and Raritan PDU as part of the monitored infrastructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Demands for functionality enhancements, cost reductions and power savings clearly suggest the introduction of multiand many-core platforms in real-time embedded systems. However, when compared to uni-core platforms, the manycores experience additional problems, namely the lack of scalable coherence mechanisms and the necessity to perform migrations. These problems have to be addressed before such systems can be considered for integration into the realtime embedded domain. We have devised several agreement protocols which solve some of the aforementioned issues. The protocols allow the applications to plan and organise their future executions both temporally and spatially (i.e. when and where the next job will be executed). Decisions can be driven by several factors, e.g. load balancing, energy savings and thermal issues. All presented protocols are analytically described, with the particular emphasis on their respective real-time behaviours and worst-case performance. The underlying assumptions are based on the multi-kernel model and the message-passing paradigm, which constitutes the communication between the interacting instances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper was proposed the development of an heterogeneous system using the microcontroller (AT90CANI28) where the protocol model CAN and the standard IEEE 802.15.4 are connected. This module is able to manage and monitor sensors and actuators using CAN and, through the wireless standard 802.15.4, communicate with the other network modules. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The scale down of transistor technology allows microelectronics manufacturers such as Intel and IBM to build always more sophisticated systems on a single microchip. The classical interconnection solutions based on shared buses or direct connections between the modules of the chip are becoming obsolete as they struggle to sustain the increasing tight bandwidth and latency constraints that these systems demand. The most promising solution for the future chip interconnects are the Networks on Chip (NoC). NoCs are network composed by routers and channels used to inter- connect the different components installed on the single microchip. Examples of advanced processors based on NoC interconnects are the IBM Cell processor, composed by eight CPUs that is installed on the Sony Playstation III and the Intel Teraflops pro ject composed by 80 independent (simple) microprocessors. On chip integration is becoming popular not only in the Chip Multi Processor (CMP) research area but also in the wider and more heterogeneous world of Systems on Chip (SoC). SoC comprehend all the electronic devices that surround us such as cell-phones, smart-phones, house embedded systems, automotive systems, set-top boxes etc... SoC manufacturers such as ST Microelectronics , Samsung, Philips and also Universities such as Bologna University, M.I.T., Berkeley and more are all proposing proprietary frameworks based on NoC interconnects. These frameworks help engineers in the switch of design methodology and speed up the development of new NoC-based systems on chip. In this Thesis we propose an introduction of CMP and SoC interconnection networks. Then focusing on SoC systems we propose: • a detailed analysis based on simulation of the Spidergon NoC, a ST Microelectronics solution for SoC interconnects. The Spidergon NoC differs from many classical solutions inherited from the parallel computing world. Here we propose a detailed analysis of this NoC topology and routing algorithms. Furthermore we propose aEqualized a new routing algorithm designed to optimize the use of the resources of the network while also increasing its performance; • a methodology flow based on modified publicly available tools that combined can be used to design, model and analyze any kind of System on Chip; • a detailed analysis of a ST Microelectronics-proprietary transport-level protocol that the author of this Thesis helped developing; • a simulation-based comprehensive comparison of different network interface designs proposed by the author and the researchers at AST lab, in order to integrate shared-memory and message-passing based components on a single System on Chip; • a powerful and flexible solution to address the time closure exception issue in the design of synchronous Networks on Chip. Our solution is based on relay stations repeaters and allows to reduce the power and area demands of NoC interconnects while also reducing its buffer needs; • a solution to simplify the design of the NoC by also increasing their performance and reducing their power and area consumption. We propose to replace complex and slow virtual channel-based routers with multiple and flexible small Multi Plane ones. This solution allows us to reduce the area and power dissipation of any NoC while also increasing its performance especially when the resources are reduced. This Thesis has been written in collaboration with the Advanced System Technology laboratory in Grenoble France, and the Computer Science Department at Columbia University in the city of New York.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. To evaluate the influence of different tertiary amines on degree of conversion (DC), shrinkage-strain, shrinkage-strain rate, Knoop microhardness, and color and transmittance stabilities of experimental resins containing BisGMA/TEGDMA (3: 1 wt), 0.25wt% camphorquinone, 1wt% amine (DMAEMA, CEMA, DMPT, DEPT or DABE). Different light-curing protocols were also evaluated. Methods. DC was evaluated with FTIR-ATR and shrinkage-strain with the bonded-disk method. Shrinkage-strain-rate data were obtained from numerical differentiation of shrinkage-strain data with respect to time. Color stability and transmittance were evaluated after different periods of artificial aging, according to ISO 7491: 2000. Results were evaluated with ANOVA, Tukey, and Dunnett`s T3 tests (alpha = 0.05). Results. Studied properties were influenced by amines. DC and shrinkage-strain were maximum at the sequence: CQ < DEPT < DMPT <= CEMA approximate to DABE < DMAEMA. Both DC and shrinkage were also influenced by the curing protocol, with positive correlations between DC and shrinkage-strain and DC and shrinkage-strain rate. Materials generally decreased in L* and increased in b*. The strong exception was the resin containing DMAEMA that did not show dark and yellow shifts. Color varied in the sequence: DMAEMA < DEPT < DMPT < CEMA < DABE. Transmittance varied in the sequence: DEPT approximate to DABE < DABE approximate to DMPT approximate to CEMA < DMPT approximate to CEMA approximate to DMAEMA, being more evident at the wavelength of 400 nm. No correlations between DC and optical properties were observed. Significance. The resin containing DMAEMA showed higher DC, shrinkage-strain, shrinkage-strain rate, and microhardness, in addition to better optical properties. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe how to integrate Internet Protocols (IP) into a typical hierarchical master-slave fieldbus network, supporting a logical ring token passing mechanism between master stations. The integration of the TCP/IP protocols in the fieldbus protocol rises a number of issues that must be addressed properly. In this paper we particularly address the issues related to the conveyance of IP fragments in fieldbus frames (fragmentation/de-fragmentation) and on how to support the symmetry inherent to the TCP/IP protocols in fieldbus slaves, which lack communication initiative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

8th International Workshop on Multiple Access Communications (MACOM2015), Helsinki, Finland.