971 resultados para navigation system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this chapter a low-cost surgical navigation solution for periacetabular osteotomy (PAO) surgery is described. Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient’s pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient’s anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient’s pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography (CT) scan is used to visualize the updated orientation of the acetabular fragment. Experiments with plastic bones (7 hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistical difference on the measurement of acetabular component reorientation (anteversion and inclination). In six out of seven hip joints the mean absolute difference was below five degrees for both anteversion and inclination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a low cost and complexity indoor location and navigation system using visible light communications and a mobile device. LED lamps work as beacons transmitting an identifier code so a mobile device can know its location. Experimental designs for transmitter and receiver interfaces are presented and potential applications are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conventional methods in horizontal drilling processes incorporate magnetic surveying techniques for determining the position and orientation of the bottom-hole assembly (BHA). Such means result in an increased weight of the drilling assembly, higher cost due to the use of non-magnetic collars necessary for the shielding of the magnetometers, and significant errors in the position of the drilling bit. A fiber-optic gyroscope (FOG) based inertial navigation system (INS) has been proposed as an alternative to magnetometer -based downhole surveying. The utilizing of a tactical-grade FOG based surveying system in the harsh downhole environment has been shown to be theoretically feasible, yielding a significant BHA position error reduction (less than 100m over a 2-h experiment). To limit the growing errors of the INS, an in-drilling alignment (IDA) method for the INS has been proposed. This article aims at describing a simple, pneumatics-based design of the IDA apparatus and its implementation downhole. A mathematical model of the setup is developed and tested with Bloodshed Dev-C++. The simulations demonstrate a simple, low cost and feasible IDA apparatus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Application of neural network algorithm for increasing the accuracy of navigation systems are showing. Various navigation systems, where a couple of sensors are used in the same device in different positions and the disturbances act equally on both sensors, the trained neural network can be advantageous for increasing the accuracy of system. The neural algorithm had used for determination the interconnection between the sensors errors in two channels to avoid the unobservation of navigation system. Representation of thermal error of two- component navigation sensors by time model, which coefficients depend only on parameters of the device, its orientations relative to disturbance vector allows to predict thermal errors change, measuring the current temperature and having identified preliminary parameters of the model for the set position. These properties of thermal model are used for training the neural network and compensation the errors of navigation system in non- stationary thermal fields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the development of a new treatment space for the UK emergency ambulance participatory observations with front-line clinicians revealed the need for an integrated patient monitoring, communication and navigation system. The research identified the different information touch-points and requirements through modes of use analysis, day-in-the-life study and simulation workshops with clinicians. Emergency scenario and role-play with paramedics identified 5 distinct ambulance modes of use. Information flow diagrams were created and checked by paramedics and digital User Interface (UI) wireframes were developed and evaluated by clinicians during clinical evaluations. Feedback from clinicians defined UI design specification further leading to a final design proposal. This research was a further development from the 2007 EPSRC funded “Smart Pods” project. The resulting interactive prototype was co-designed in collaboration with ambulance crews and provides a vision of what could be achieved by integrating well-proven IT technologies and protocols into a package relevant in the emergency medicine field. The system has been reviewed by over 40 ambulance crews and is part of a newly co-designed ambulance treatment space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RatSLAM is a biologically-inspired visual SLAM and navigation system that has been shown to be effective indoors and outdoors on real robots. The spatial representation at the core of RatSLAM, the experience map, forms in a distributed fashion as the robot learns the environment. The activity in RatSLAM’s experience map possesses some geometric properties, but still does not represent the world in a human readable form. A new system, dubbed RatChat, has been introduced to enable meaningful communication with the robot. The intention is to use the “language games” paradigm to build spatial concepts that can be used as the basis for communication. This paper describes the first step in the language game experiments, showing the potential for meaningful categorization of the spatial representations in RatSLAM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The control and coordination of multiple mobile robots is a challenging task; particularly in environments with multiple, rapidly moving obstacles and agents. This paper describes a robust approach to multi-robot control, where robustness is gained from competency at every layer of robot control. The layers are: (i) a central coordination system (MAPS), (ii) an action system (AES), (iii) a navigation module, and (iv) a low level dynamic motion control system. The multi-robot coordination system assigns each robot a role and a sub-goal. Each robots action execution system then assumes the assigned role and attempts to achieve the specified sub-goal. The robots navigation system directs the robot to specific goal locations while ensuring that the robot avoids any obstacles. The motion system maps the heading and speed information from the navigation system to force-constrained motion. This multi-robot system has been extensively tested and applied in the robot soccer domain using both centralized and distributed coordination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we describe a body of work aimed at extending the reach of mobile navigation and mapping. We describe how running topological and metric mapping and pose estimation processes concurrently, using vision and laser ranging, has produced a full six-degree-of-freedom outdoor navigation system. It is capable of producing intricate three-dimensional maps over many kilometers and in real time. We consider issues concerning the intrinsic quality of the built maps and describe our progress towards adding semantic labels to maps via scene de-construction and labeling. We show how our choices of representation, inference methods and use of both topological and metric techniques naturally allow us to fuse maps built from multiple sessions with no need for manual frame alignment or data association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modernized GPS and GLONASS, together with new GNSS systems, BeiDou and Galileo, offer code and phase ranging signals in three or more carriers. Traditionally, dual-frequency code and/or phase GPS measurements are linearly combined to eliminate effects of ionosphere delays in various positioning and analysis. This typical treatment method has imitations in processing signals at three or more frequencies from more than one system and can be hardly adapted itself to cope with the booming of various receivers with a broad variety of singles. In this contribution, a generalized-positioning model that the navigation system independent and the carrier number unrelated is promoted, which is suitable for both single- and multi-sites data processing. For the synchronization of different signals, uncalibrated signal delays (USD) are more generally defined to compensate the signal specific offsets in code and phase signals respectively. In addition, the ionospheric delays are included in the parameterization with an elaborate consideration. Based on the analysis of the algebraic structures, this generalized-positioning model is further refined with a set of proper constrains to regularize the datum deficiency of the observation equation system. With this new model, uncalibrated signal delays (USD) and ionospheric delays are derived for both GPS and BeiDou with a large dada set. Numerical results demonstrate that, with a limited number of stations, the uncalibrated code delays (UCD) are determinate to a precision of about 0.1 ns for GPS and 0.4 ns for BeiDou signals, while the uncalibrated phase delays (UPD) for L1 and L2 are generated with 37 stations evenly distributed in China for GPS with a consistency of about 0.3 cycle. Extra experiments concerning the performance of this novel model in point positioning with mixed-frequencies of mixed-constellations is analyzed, in which the USD parameters are fixed with our generated values. The results are evaluated in terms of both positioning accuracy and convergence time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Homing behaviour in the New Zealand long-tailed bat (Chalinolobus tuberculatus), a temperate insectivorous species, was investigated at Grand Canyon Cave, central North Island. A pilot study of nine adult male bats was conducted to determine whether use of the cave was regular enough for a homing study. Eight bats returned to the cave over the 3 week monitoring period, six on the night of the following release. Nine additional bats carrying radio transmitters were then released at three sites (three at each site) c.5, 10 and 20km due east of the border of, and outside the population's known familiar area respectively. All but one of these nine was subsequently detected at the cave. Results suggest that adult long-tailed bats are able to return home following displacement both inside and outside their familiar area. Implications of these findings for translocations of bats and the possessions of a potential long distance navigation system by this species are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews the state-of-the-art in the automation of underground mining vehicles and reports on the development of an autonomous navigation system under development through the CMTE with sponsorship arranged by AMIRA. Past attempts at automating LHDs and haul trucks are described and their particular strengths and weaknesses are discussed. The auto-guidance system being developed overcomes some of the limitations of state-of-the-art prototype æcommercialÆ systems. It can be retrofitted to existing remote controlled vehicles, uses minimum installed infrastructure and is flexible enough for rapid relocation to alternate routes. The navigation techniques use data fusion of two separate sets of sensors combining natural feature recognition, nodal maps and inertial navigation techniques. Collision detection is incorporated and people and other traffic are excluded from the tramming area. This paper describes the work being done by the group with regard to auto-tramming and also outlines the future goals.