986 resultados para natural rubber


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constant viscosity natural rubber has been prepared using mercaptan. The accelerated storage tests indicate that the storage hardening phenomenon of natural rubber can be inhibited by mercaptan. The amount of mercaptan (2-mercaptobenzothiazole) of 0.14 phr is sufficient to prepare constant viscosity natural rubber and the storage hardening numbers of constant viscosity NR in both Mooney viscosity and Wallace plasticity are less than 4. The processing properties and anti-oxidative behavior of CV-NR can be improved, although the mechanical properties of vulcanizates decreased slightly as compared to those of natural rubber. The results further support the hypothesis that the abnormal groups in natural rubber molecules are aldehyde groups and are responsible for the hardening of natural rubber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ prepared zinc disorbate (ZDS) in natural rubber (NR) by the reaction of zinc oxide and sorbic acid was used to reinforce the dicumyl peroxide-cured NR vulcanizate. The changes in mechanical properties of NR vulcanizates after ageing and were determined and the structures and thermal stability of vulcanizates were also analyzed using scanning electron microscope and thermal gravimetric analyzer. The change ratios in tensile strength and elongation at break of NR vulcanizate with theoretic formation of ZDS of 21phr can be increased to -33 from -44 and -27 from -38 after ageing and the initial weight loss temperature of NR vulcanizate can be increased for about 7°C as compared to un-reinforced NR vulcanizate, indicating that the antioxidative behavior and thermal stability of NR can be improved significantly with theoretic formation of ZDS of 21phr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA). The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal resistance is one of the most dominative properties for polymer materials. Thermal degradation mechanisms of epoxidized natural rubber (ENR) and NR are studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results show that, the introduction of epoxy groups into the NR molecular main chain leads to a remarkable change in the degradation mechanism. The thermal stability of ENR is worse than that of NR. For the first thermooxidative degradation stage, the thermal decomposition mechanism of ENR is similar to that of NR, which corresponds to a mechanism involving one-dimensional diffusion. For the second stage, the thermal decomposition mechanism of ENR is a three-dimensional diffusion, which is more complex than that of NR. Kinetic analysis showed that activation energy (E?), activation entropy (?H) and activation Gibbs energy (?G) values are all positive, indicating that the thermooxidative degradation process of ENR is non-spontaneous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO 2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The microstructure of SiO2 and nanocomposites with different SiO 2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO 2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60-100 nm at the low content (SiO2? 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NR/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally reduced at temperatures of 200 and 600 °C) in NR by a solution blending method. RGO exfoliation and the uniform distribution of fillers in the composites were studied by atomic force microscopy, Fourier transformation infrared spectroscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy. The solvent sensitivity of the composite samples was noted from the sudden variation in electrical conductivity which was due to the breakdown of the filler networks during swelling in different solvents. It was found that the synergy between CNTs and RGO exfoliated at 200 °C imparts maximum sensitivity to NR in recognizing the usually used aromatic laboratory solvents. Mechanical and dynamic mechanical studies reveal efficient filler reinforcement, depending strongly on the nature of filler-elastomer interactions and supports the sensing mechanism. Such interactions were quantitatively determined using the Maier and Göritz model from Payne effect experiments. It is concluded that the polarity induced by RGO addition reduces the interactions between CNTs and ultimately results in the solvent sensitivity. © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interfacial interaction of composites dominates the properties of polymeric/inorganic nanocomposites. Herein, epoxy and hydroxyl groups are introduced into the natural rubber (NR) molecular chains to anchor oxygenous functional groups on the surface of graphene oxide (GO) sheets and therefore enhance the interfacial interaction between GO and rubber. From the morphological observation and interaction analysis, it is found that epoxidized natural rubber (ENR) latex particles are assembled onto the surfaces of GO sheets by employing hydrogen bonding interaction as driving force. This self-assembly depresses restacking and agglomeration of GO sheets and leads to homogenous dispersion of GO within ENR matrix. The formation of hydrogen bonding interface between ENR and GO demonstrates a significant reinforcement for the ENR host. Compared with those of pure ENR, the composite with 0.7 wt% GO loading receives 87% increase in tensile strength and 8.7 fold increase in modulus at 200% elongation after static in-situ vulcanization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G′) became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural rubber latex (NRL) from Hevea brasiliensis was used as a matrix to synthesize gold nanoparticles (AuNPs), leading to an organic-inorganic hybrid latex of NRL-supported AuNPs (AuNPs@NRL). The in situ and environmentally friendly preparation of AuNPs in an NRL matrix was developed by thermal treatment without using any other reducing agents or stabilizers because natural rubber particles and non-rubber components present in serum can serve as supporters for the synthesized AuNPs. As a result, the nanosized and well-dispersed AuNPs not only are decorated on the surface of natural rubber particles, but also can be found in the serum of NRL. The size of the AuNPs presented in NRL matrix can be controlled by adjusting the concentration of NRL. Furthermore, the flexible surface-enhanced Raman scattering (SERS) substrates made from the AuNPs@NRL through vacuum filtration presented good enhancement of the Raman probe molecule of 4-mercaptopyridine and outstanding SERS reproducibility. The capability of synthesizing the bio-supported nanohybrid latex provides a novel green and simple approach for the fabrication of flexible and effective SERS substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoplastic starch/natural rubber polymer blends were prepared using directly natural latex and cornstarch. The blends were prepared in an intensive batch mixer at 150 degreesC, with natural rubber content varying from 2.5 to 20%. The blends were characterised by mechanical analysis (stress-strain) and by scanning electron microscopy. The results revealed a reduction in the modulus and in tensile strength, becoming the blends less brittle than thermoplastic starch alone. Phase separation was observed in some compositions and was dependent on rubber and on plasticiser content (glycerol). Increasing plasticiser content made possible the addition of higher amounts of rubber. The addition of rubber was, however, limited by phase separation the appearance of which depended on the glycerol content. Scanning electron microscopy showed a good dispersion of the natural rubber in the continuos phase of thermoplastic starch matrix. (C) 2003 Elsevier B.V. Ltd. All rights reserved.