980 resultados para music semantic model
Resumo:
The COntext INterchange (COIN) strategy is an approach to solving the problem of interoperability of semantically heterogeneous data sources through context mediation. COIN has used its own notation and syntax for representing ontologies. More recently, the OWL Web Ontology Language is becoming established as the W3C recommended ontology language. We propose the use of the COIN strategy to solve context disparity and ontology interoperability problems in the emerging Semantic Web – both at the ontology level and at the data level. In conjunction with this, we propose a version of the COIN ontology model that uses OWL and the emerging rules interchange language, RuleML.
Resumo:
Wednesday 2nd April 2014 Speaker(s): Stefan Decker Time: 02/04/2014 11:00-11:50 Location: B2/1083 File size: 897 Mb Abstract Ontologies have been promoted and used for knowledge sharing. Several models for representing ontologies have been developed in the Knowledge Representation field, in particular associated with the Semantic Web. In my talk I will summarise developments so far, and will argue that the currently advocated approaches miss certain basic properties of current distributed information sharing infrastructures (read: the Web and the Internet). I will sketch an alternative model aiming to support knowledge sharing and re-use on a global basis.
Resumo:
Many discussions about the music processing have occurred over the years. It is stated, on one hand, the existence of a single joint for grasping the music or any of its attributes by the Central Nervous System. Furthermore, it is claimed also the existence of multiple and diverse systems to understand each aspect of music. In general, model-independent set, studies focusing on the processing of sound components, specifically the musical tones, can significantly clarify the basic functioning of the auditory system and other higher brain functions. In this sense, one of the most prominent approaches in the study of sensory and perceptual processes of hearing, or changed unharmed, has been Neuroscience, which is interested in the interaction between the brain areas corresponding to different cognitive processes. Thus, the purpose of this study was to review the studies that dealt processing models of the attributes of tonal Western music, based on the conception that neuropsychological neural structures are interdependent sensory pathways.
Resumo:
Most cochlear implant (CI) users perceive music poorly. Little is known, however, about the musical enjoyment received by CI users. The author examined possible relationships between musical enjoyment and music perception tasks through the use of 1) multiple musical tests, and 2) two groups of listeners: normal-hearing (NH) listeners with a CI-simulation and actual CI users. The two groups’ performances are compared to determine whether NH participants listening to music via CI-simulation software are a good model for actual CI users for perceiving music.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
Currently many ontologies are available for addressing different domains. However, it is not always possible to deploy such ontologies to support collaborative working, so that their full potential can be exploited to implement intelligent cooperative applications capable of reasoning over a network of context-specific ontologies. The main problem arises from the fact that presently ontologies are created in an isolated way to address specific needs. However we foresee the need for a network of ontologies which will support the next generation of intelligent applications/devices, and, the vision of Ambient Intelligence. The main objective of this paper is to motivate the design of a networked ontology (Meta) model which formalises ways of connecting available ontologies so that they are easy to search, to characterise and to maintain. The aim is to make explicit the virtual and implicit network of ontologies serving the Semantic Web.
Resumo:
Decoding emotional prosody is crucial for successful social interactions, and continuous monitoring of emotional intent via prosody requires working memory. It has been proposed by Ross and others that emotional prosody cognitions in the right hemisphere are organized in an analogous fashion to propositional language functions in the left hemisphere. This study aimed to test the applicability of this model in the context of prefrontal cortex working memory functions. BOLD response data were therefore collected during performance of two emotional working memory tasks by participants undergoing fMRI. In the prosody task, participants identified the emotion conveyed in pre-recorded sentences, and working memory load was manipulated in the style of an N-back task. In the matched lexico-semantic task, participants identified the emotion conveyed by sentence content. Block-design neuroimaging data were analyzed parametrically with SPM5. At first, working memory for emotional prosody appeared to be right-lateralized in the PFC, however, further analyses revealed that it shared much bilateral prefrontal functional neuroanatomy with working memory for lexico-semantic emotion. Supplementary separate analyses of males and females suggested that these language functions were less bilateral in females, but their inclusion did not alter the direction of laterality. It is concluded that Ross et al.'s model is not applicable to prefrontal cortex working memory functions, that evidence that working memory cannot be subdivided in prefrontal cortex according to material type is increased, and that incidental working memory demands may explain the frontal lobe involvement in emotional prosody comprehension as revealed by neuroimaging studies. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In order to organize distributed educational resources efficiently, to provide active learners an integrated, extendible and cohesive interface to share the dynamically growing multimedia learning materials on the Internet, this paper proposes a generic resource organization model with semantic structures to improve expressiveness, scalability and cohesiveness. We developed an active learning system with semantic support for learners to access and navigate through efficient and flexible manner. We learning resources in an efficient and flexible manner. We provide facilities for instructors to manipulate the structured educational resources via a convenient visual interface. We also developed a resource discovering and gathering engine based on complex semantic associations for several specific topics.
Resumo:
A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.
Resumo:
Computer music usually sounds mechanical; hence, if musicality and music expression of virtual actors could be enhanced according to the user’s mood, the quality of experience would be amplified. We present a solution that is based on improvisation using cognitive models, case based reasoning (CBR) and fuzzy values acting on close-to-affect-target musical notes as retrieved from CBR per context. It modifies music pieces according to the interpretation of the user’s emotive state as computed by the emotive input acquisition componential of the CALLAS framework. The CALLAS framework incorporates the Pleasure-Arousal-Dominance (PAD) model that reflects emotive state of the user and represents the criteria for the music affectivisation process. Using combinations of positive and negative states for affective dynamics, the octants of temperament space as specified by this model are stored as base reference emotive states in the case repository, each case including a configurable mapping of affectivisation parameters. Suitable previous cases are selected and retrieved by the CBR subsystem to compute solutions for new cases, affect values from which control the music synthesis process allowing for a level of interactivity that makes way for an interesting environment to experiment and learn about expression in music.
Resumo:
Driven by new network and middleware technologies such as mobile broadband, near-field communication, and context awareness the so-called ambient lifestyle will foster innovative use cases in different domains. In the EU project Hydra high-level security, trust and privacy concerns such as loss of control, profiling and surveillance are considered at the outset. At the end of this project the. Hydra middleware development platform will have been designed so as to enable developers to realise secure ambient scenarios. This paper gives a short introduction to the Hydra project and its approach to ensure security by design. Based on the results of a focus group analysis of the user domain "building automation" typical threats are evaluated and their risks are assessed. Then, specific security requirements with respect to security, privacy, and trust are derived in order to incorporate them into the Hydra Security Meta-Model. How concepts such as context, semantic resolution of security, and virtualisation support the overall Hydra approach will be introduced and illustrated on the basis of it technical building automation scenario.
Resumo:
A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt for bridging the so called "semantic gap". The proposed image feature vector model is fundamentally underpinned by an automatic image labelling framework, called Collaterally Cued Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts accompanying the images with the state-of-the-art low-level visual feature extraction techniques for automatically assigning textual keywords to image regions. A subset of the Corel image collection was used for evaluating the proposed method. The experimental results indicate that our semantic-level visual content descriptors outperform both conventional visual and textual image feature models.
Resumo:
Recall in many types of verbal memory task is reliably disrupted by the presence of auditory distracters, with verbal distracters frequently proving the most disruptive (Beaman, 2005). A multinomial processing tree model (Schweickert, 1993) is applied to the effects on free recall of background speech from a known or an unknown language. The model reproduces the free recall curve and the impact on memory of verbal distracters for which a lexical entry exists (i.e., verbal items from a known language). The effects of semantic relatedness of distracters within a language is found to depend upon a redintegrative factor thought to reflect the contribution of the speech-production system. The differential impacts of known and unknown languages cannot be accounted for in this way, but the same effects of distraction are observed amongst bilinguals, regardless of distracter-language.