903 resultados para multi-language environment
Resumo:
The population of English Language Learners (ELLs) globally has been increasing substantially every year. In the United States alone, adult ELLs are the fastest growing portion of learners in adult education programs (Yang, 2005). There is a significant need to improve the teaching of English to ELLs in the United States and other English-speaking dominant countries. However, for many ELLs, speaking, especially to Native English Speakers (NESs), causes considerable language anxiety, which in turn plays a vital role in hindering their language development and academic progress (Pichette, 2009; Woodrow, 2006). Task-based Language Teaching (TBLT), such as simulation activities, has long been viewed as an effective approach for second-language development. The current advances in technology and rapid emergence of Multi-User Virtual Environments (MUVEs) have provided an opportunity for educators to consider conducting simulations online for ELLs to practice speaking English to NESs. Yet to date, empirical research on the effects of MUVEs on ELLs’ language development and speaking is limited (Garcia-Ruiz, Edwards, & Aquino-Santos, 2007). This study used a true experimental treatment control group repeated measures design to compare the perceived speaking anxiety levels (as measured by an anxiety scale administered per simulation activity) of 11 ELLs (5 in the control group, 6 in the experimental group) when speaking to Native English Speakers (NESs) during 10 simulation activities. Simulations in the control group were done face-to-face, while those in the experimental group were done in the MUVE of Second Life. The results of the repeated measures ANOVA revealed after the Huynh-Feldt epsilon correction, demonstrated for both groups a significant decrease in anxiety levels over time from the first simulation to the tenth and final simulation. When comparing the two groups, the results revealed a statistically significant difference, with the experimental group demonstrating a greater anxiety reduction. These results suggests that language instructors should consider including face-to-face and MUVE simulations with ELLs paired with NESs as part of their language instruction. Future investigations should investigate the use of other multi-user virtual environments and/or measure other dimensions of the ELL/NES interactions.
Resumo:
Synthetic dyes are xenobiotic compounds that are being increasingly used in several industries, with special emphasis in the paper, textile and leather industries. Over 100,000 commercial dyes exist today and more than 7 × 105 tons of dyestuff is produced annually, of which 1–1.5 × 105 tons is released into the wastewaters (Rai et al in Crit Rev Environ Sci Tecnhol 35:219–238, 2005). Among these, azo dyes, characterized by the presence of one or more azo groups (–N=N–), and anthraquinonic dyes represent the largest and most versatile groups.
Resumo:
4th International Conference, SIMPAR 2014, Bergamo, Italy, October 20-23, 2014
Resumo:
Environmental pollution is one of the major and most important problems of the modern world. In order to fulfill the needs and demands of the overgrowing human population, developments in agriculture, medicine, energy sources, and all chemical industries are necessary (Ali 2010). Over the last century, the increased industrialization and continued population growth led to an augmented production of environmental pollutants that are released into air, water, and soil, with significant impact in the degradation of various ecosystems (Ali 2010, Khan et al. 2013).(...)
Resumo:
This paper presents a programming environment for supporting learning in STEM, particularly mobile robotic learning. It was designed to maintain progressive learning for people with and without previous knowledge of programming and/or robotics. The environment was multi platform and built with open source tools. Perception, mobility, communication, navigation and collaborative behaviour functionalities can be programmed for different mobile robots. A learner is able to programme robots using different programming languages and editor interfaces: graphic programming interface (basic level), XML-based meta language (intermediate level) or ANSI C language (advanced level). The environment supports programme translation transparently into different languages for learners or explicitly on learners’ demand. Learners can access proposed challenges and learning interfaces by examples. The environment was designed to allow characteristics such as extensibility, adaptive interfaces, persistence and low software/hardware coupling. Functionality tests were performed to prove programming environment specifications. UV BOT mobile robots were used in these tests
Resumo:
Peer-reviewed
Resumo:
Cooperative behaviour of agents within highly dynamic and nondeterministic domains is an active field of research. In particular establishing highly responsive teamwork, where agents are able to react on dynamic changes in the environment while facing unreliable communication and sensory noise, is an open problem. Moreover, modelling such responsive, cooperative behaviour is difficult. In this work, we specify a novel model for cooperative behaviour geared towards highly dynamic domains. In our approach, agents estimate each other’s decision and correct these estimations once they receive contradictory information. We aim at a comprehensive approach for agent teamwork featuring intuitive modelling capabilities for multi-agent activities, abstractions over activities and agents, and a clear operational semantic for the new model. This work encompasses a complete specification of the new language, ALICA.
Resumo:
Multi-agent systems have been adopted to build intelligent environment in recent years. It was claimed that energy efficiency and occupants' comfort were the most important factors for evaluating the performance of modem work environment, and multi-agent systems presented a viable solution to handling the complexity of dynamic building environment. While previous research has made significant advance in some aspects, the proposed systems or models were often not applicable in a "shared environment". This paper introduces an ongoing project on multi-agent for building control, which aims to achieve both energy efficiency and occupants' comfort in a shared environment.
Resumo:
Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.
Resumo:
Most current state-of-the-art haptic devices render only a single force, however almost all human grasps are characterised by multiple forces and torques applied by the fingers and palms of the hand to the object. In this chapter we will begin by considering the different types of grasp and then consider the physics of rigid objects that will be needed for correct haptic rendering. We then describe an algorithm to represent the forces associated with grasp in a natural manner. The power of the algorithm is that it considers only the capabilities of the haptic device and requires no model of the hand, thus applies to most practical grasp types. The technique is sufficiently general that it would also apply to multi-hand interactions, and hence to collaborative interactions where several people interact with the same rigid object. Key concepts in friction and rigid body dynamics are discussed and applied to the problem of rendering multiple forces to allow the person to choose their grasp on a virtual object and perceive the resulting movement via the forces in a natural way. The algorithm also generalises well to support computation of multi-body physics