916 resultados para movement patterns
Resumo:
The identification of attractors is one of the key tasks in studies of neurobiological coordination from a dynamical systems perspective, with a considerable body of literature resulting from this task. However, with regards to typical movement models investigated, the overwhelming majority of actions studied previously belong to the class of continuous, rhythmical movements. In contrast, very few studies have investigated coordination of discrete movements, particularly multi-articular discrete movements. In the present study, we investigated phase transition behavior in a basketball throwing task where participants were instructed to shoot at the basket from different distances. Adopting the ubiquitous scaling paradigm, throwing distance was manipulated as a candidate control parameter. Using a cluster analysis approach, clear phase transitions between different movement patterns were observed in performance of only two of eight participants. The remaining participants used a single movement pattern and varied it according to throwing distance, thereby exhibiting hysteresis effects. Results suggested that, in movement models involving many biomechanical degrees of freedom in degenerate systems, greater movement variation across individuals is available for exploitation. This observation stands in contrast to movement variation typically observed in studies using more constrained bi-manual movement models. This degenerate system behavior provides new insights and poses fresh challenges to the dynamical systems theoretical approach, requiring further research beyond conventional movement models.
Resumo:
INTRODUCTION In their target article, Yuri Hanin and Muza Hanina outlined a novel multidisciplinary approach to performance optimisation for sport psychologists called the Identification-Control-Correction (ICC) programme. According to the authors, this empirically-verified, psycho-pedagogical strategy is designed to improve the quality of coaching and consistency of performance in highly skilled athletes and involves a number of steps including: (i) identifying and increasing self-awareness of ‘optimal’ and ‘non-optimal’ movement patterns for individual athletes; (ii) learning to deliberately control the process of task execution; and iii), correcting habitual and random errors and managing radical changes of movement patterns. Although no specific examples were provided, the ICC programme has apparently been successful in enhancing the performance of Olympic-level athletes. In this commentary, we address what we consider to be some important issues arising from the target article. We specifically focus attention on the contentious topic of optimization in neurobiological movement systems, the role of constraints in shaping emergent movement patterns and the functional role of movement variability in producing stable performance outcomes. In our view, the target article and, indeed, the proposed ICC programme, would benefit from a dynamical systems theoretical backdrop rather than the cognitive scientific approach that appears to be advocated. Although Hanin and Hanina made reference to, and attempted to integrate, constructs typically associated with dynamical systems theoretical accounts of motor control and learning (e.g., Bernstein’s problem, movement variability, etc.), these ideas required more detailed elaboration, which we provide in this commentary.
Resumo:
Purpose: To investigate whether wearing different presbyopic vision corrections alters the pattern of eye and head movements when viewing and responding to driving-related traffic scenes. Methods: Participants included 20 presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision (SV) reading spectacles. Each participant wore five different vision corrections: distance SV lenses, progressive addition spectacle lenses (PAL), bifocal spectacle lenses (BIF), monovision (MV) and multifocal contact lenses (MTF CL). For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle, and identify a series of peripherally presented targets. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). Eye and head movements were measured, and the accuracy of target recognition was also recorded. Results: The path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL (both p ≤ 0.013). The path length of head movements was greater with SV, BIF, and PAL than MV and MTF CL (all p < 0.001). Target recognition and brake response times were not significantly affected by vision correction, whereas target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze (p = 0.008), regardless of vision correction. Conclusions: Different presbyopic vision corrections alter eye and head movement patterns. The longer path length of eye and head movements and greater number of saccades associated with the spectacle presbyopic corrections may affect some aspects of driving performance.
Resumo:
Purpose: To investigate whether wearing different presbyopic refractive corrections alters the pattern of eye and head movements when searching for dynamic targets in driving-related traffic scenes. Methods: Eye and head movements of 20 presbyopes (mean age = 56.2 ± 5.7 years), who had no experience of wearing presbyopic corrections or were unadapted wearers were recorded using the faceLABTM eye and head tracker, while wearing five different corrections: single vision lenses (SV), progressive addition lenses (PALs), bifocal spectacles (BIF), monovision and multifocal contact lenses (MTF CLs) in random order (within-subjects comparison). Recorded traffic scenes of suburban roads and expressways with edited targets were viewed as dynamic stimuli. Results: The magnitude of eye and head movements was significantly greater for SV, BIF and PALs than monovision and MTF CLs (p < 0.001). In addition, BIF wear led to more eye movements than PAL wear (p = 0.017), while PAL wear resulted in greater head movements than SV wear (p = 0.018). The ratio of eye to head movement was smaller for PALs than all other groups (p < 0.001). The number of saccades made to fixate a target was significantly higher for BIF and PALs than monovision or MTF CLs (p < 0.05). Conclusions: Different presbyopic corrections can alter eye and head movement patterns. Wearing spectacles such as BIF and PALs produced relatively greater eye and head movements and saccades when viewing dynamic targets. The impact of these changes in eye and head movement patterns may have implications for driving performance under real world driving conditions.
Resumo:
Purpose: To investigate whether wearing different presbyopic vision corrections alters the pattern of eye and head movements when viewing dynamic driving-related traffic scenes. Methods: Participants included 20 presbyopes (mean age: 56±5.7 years) who had no experience of wearing presbyopic vision corrections (i.e. all were single vision wearers). Eye and head movements were recorded while wearing five different vision corrections: single vision lenses (SV), progressive addition spectacle lenses (PALs), bifocal spectacle lenses (BIF), monovision (MV) and multifocal contact lenses (MTF CL) in random order. Videotape recordings of traffic scenes of suburban roads and expressways (with edited targets) were presented as dynamic driving-related stimuli and digital numeric display panels included as near visual stimuli (simulating speedometer and radio). Eye and head movements were recorded using the faceLAB™ system and the accuracy of target identification was also recorded. Results: The magnitude of eye movements while viewing the driving-related traffic scenes was greater when wearing BIF and PALs than MV and MTF CL (p≤0.013). The magnitude of head movements was greater when wearing SV, BIF and PALs than MV and MTF CL (p<0.0001) and the number of saccades was significantly higher for BIF and PALs than MV (p≤0.043). Target recognition accuracy was poorer for all vision corrections when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze (p=0.008), and PALs gave better performance than MTF CL (p=0.043). Conclusions: Different presbyopic vision corrections alter eye and head movement patterns. In particular, the larger magnitude of eye and head movements and greater number of saccades associated with the spectacle presbyopic corrections, may impact on driving performance.
Resumo:
Presbyopia affects individuals from the age of 45 years onwards, resulting in difficulty in accurately focusing on near objects. There are many optical corrections available including spectacles or contact lenses that are designed to enable presbyopes to see clearly at both far and near distances. However, presbyopic vision corrections also disturb aspects of visual function under certain circumstances. The impact of these changes on activities of daily living such as driving are, however, poorly understood. Therefore, the aim of this study was to determine which aspects of driving performance might be affected by wearing different types of presbyopic vision corrections. In order to achieve this aim, three experiments were undertaken. The first experiment involved administration of a questionnaire to compare the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections. The questionnaire was developed and piloted, and included a series of items regarding difficulties experienced while driving under day and night-time conditions. Two hundred and fifty five presbyopic patients responded to the questionnaire and were categorised into five groups, including those wearing no vision correction for driving (n = 50), bifocal spectacles (BIF, n = 54), progressive addition lenses spectacles (PAL, n = 50), monovision (MV, n = 53) and multifocal contact lenses (MTF CL, n = 48). Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, MV and MTF CL wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly with regard to disturbances from glare and haloes. Progressive addition lens wearers noticed more distortion of peripheral vision, while BIF wearers reported more difficulties with tasks requiring changes in focus and those who wore no vision correction for driving reported problems with intermediate and near tasks. Overall, the mean level of satisfaction for daytime driving was quite high for all of the groups (over 80%), with the BIF wearers being the least satisfied with their vision for driving. Conversely, at night, MTF CL wearers expressed the least satisfaction. Research into eye and head movements has become increasingly of interest in driving research as it provides a means of understanding how the driver responds to visual stimuli in traffic. Previous studies have found that wearing PAL can affect eye and head movement performance resulting in slower eye movement velocities and longer times to stabilize the gaze for fixation. These changes in eye and head movement patterns may have implications for driving safety, given that the visual tasks for driving include a range of dynamic search tasks. Therefore, the second study was designed to investigate the influence of different presbyopic corrections on driving-related eye and head movements under standardized laboratory-based conditions. Twenty presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision reading spectacles, were recruited. Each participant wore five different types of vision correction: single vision distance lenses (SV), PAL, BIF, MV and MTF CL. For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle and identify a series of peripherally presented targets while their eye and head movements were recorded using the faceLAB® eye and head tracking system. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). The results demonstrated that the path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL. The path length of head movements was greater with SV, BIF and PAL than MV and MTF CL. Target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze, regardless of vision correction type. The third experiment aimed to investigate the real world driving performance of presbyopes while wearing different vision corrections measured on a closed-road circuit at night-time. Eye movements were recorded using the ASL Mobile Eye, eye tracking system (as the faceLAB® system proved to be impractical for use outside of the laboratory). Eleven participants (mean age: 57.25 ± 5.78 years) were fitted with four types of prescribed vision corrections (SV, PAL, MV and MTF CL). The measures of driving performance on the closed-road circuit included distance to sign recognition, near target recognition, peripheral light-emitting-diode (LED) recognition, low contrast road hazards recognition and avoidance, recognition of all the road signs, time to complete the course, and driving behaviours such as braking, accelerating, and cornering. The results demonstrated that driving performance at night was most affected by MTF CL compared to PAL, resulting in shorter distances to read signs, slower driving speeds, and longer times spent fixating road signs. Monovision resulted in worse performance in the task of distance to read a signs compared to SV and PAL. The SV condition resulted in significantly more errors made in interpreting information from in-vehicle devices, despite spending longer time fixating on these devices. Progressive addition lenses were ranked as the most preferred vision correction, while MTF CL were the least preferred vision correction for night-time driving. This thesis addressed the research question of how presbyopic vision corrections affect driving performance and the results of the three experiments demonstrated that the different types of presbyopic vision corrections (e.g. BIF, PAL, MV and MTF CL) can affect driving performance in different ways. Distance-related driving tasks showed reduced performance with MV and MTF CL, while tasks which involved viewing in-vehicle devices were significantly hampered by wearing SV corrections. Wearing spectacles such as SV, BIF and PAL induced greater eye and head movements in the simulated driving condition, however this did not directly translate to impaired performance on the closed- road circuit tasks. These findings are important for understanding the influence of presbyopic vision corrections on vision under real world driving conditions. They will also assist the eye care practitioner to understand and convey to patients the potential driving difficulties associated with wearing certain types of presbyopic vision corrections and accordingly to support them in the process of matching patients to optical corrections which meet their visual needs.
Resumo:
Contemporary urban form, particularly in the cities of South Africa, lacks distinction and quality. The majority of developments are conceived as private and dislocated initiatives, surveiled enclaves with gated access being the only conduit to the outside world. Any concern for a positive contribution to the matrix of public activity is seldom a consideration. The urban form responds to the perception that traffic systems are paramount to the successful flux of the city in satisfying the escalating demands of vehicular movement. In contrast many of the urban centres around the world, the great historical centres of Europe, Americas and the Sub-Continent are admired and considered the ultimate models in urban experience. The colonnades, bazaars and boulevards hosting an abundance of street activity are the characteristics of such centres and are symptomatic of a city growth based on pedestrian movement patterns, an urbanism supportative of human interaction and exchange, a form which has nurtured the existence of a public realm. Through the understanding of the principles of traditional urbanism we may learn that the modernist paradigm of a contemporary suburbia has resulted in disconnected and separate land uses with isolated districts where a reliance on the car is essential rather than optional.
Resumo:
Background: Traditional causal modeling of health interventions tends to be linear in nature and lacks multidisciplinarity. Consequently, strategies for exercise prescription in health maintenance are typically group based and focused on the role of a common optimal health status template toward which all individuals should aspire. ----- ----- Materials and methods: In this paper, we discuss inherent weaknesses of traditional methods and introduce an approach exercise training based on neurobiological system variability. The significance of neurobiological system variability in differential learning and training was highlighted.----- ----- Results: Our theoretical analysis revealed differential training as a method by which neurobiological system variability could be harnessed to facilitate health benefits of exercise training. It was observed that this approach emphasizes the importance of using individualized programs in rehabilitation and exercise, rather than group-based strategies to exercise prescription.----- ----- Conclusion: Research is needed on potential benefits of differential training as an approach to physical rehabilitation and exercise prescription that could counteract psychological and physical effects of disease and illness in subelite populations. For example, enhancing the complexity and variability of movement patterns in exercise prescription programs might alleviate effects of depression in nonathletic populations and physical effects of repetitive strain injuries experienced by athletes in elite and developing sport programs.
Resumo:
Introduction: Why we need to base childrens’ sport and physical education on the principles of dynamical systems theory and ecological psychology As the childhood years are crucial for developing many physical skills as well as establishing the groundwork leading to lifelong participation in sport and physical activities, (Orlick & Botterill, 1977, p. 11) it is essential to examine current practice to make sure it is meeting the needs of children. In recent papers (e.g. Renshaw, Davids, Chow & Shuttleworth, in press; Renshaw, Davids, Chow & Hammond, in review; Chow et al., 2009) we have highlighted that a guiding theoretical framework is needed to provide a principled approach to teaching and coaching and that the approach must be evidence- based and focused on mechanism and not just on operational issues such as practice, competition and programme management (Lyle, 2002). There is a need to demonstrate how nonlinear pedagogy underpins teaching and coaching practice for children given that some of the current approaches underpinning children’s sport and P.E. may not be leading to optimal results. For example, little time is spent undertaking physical activities (Tinning, 2006) and much of this practice is not representative of the competition demands of the performance environment (Kirk & McPhail, 2002; Renshaw et al., 2008). Proponents of a non- linear pedagogy advocate the design of practice by applying key concepts such as the mutuality of the performer and environment, the tight coupling of perception and action, and the emergence of movement solutions due to self organisation under constraints (see Renshaw, et al., in press). As skills are shaped by the unique interacting individual, task and environmental constraints in these learning environments, small changes to individual structural (e.g. factors such as height or limb length) or functional constraints (e.g. factors such as motivation, perceptual skills, strength that can be acquired), task rules, equipment, or environmental constraints can lead to dramatic changes in movement patterns adopted by learners to solve performance problems. The aim of this chapter is to provide real life examples for teachers and coaches who wish to adopt the ideas of non- linear pedagogy in their practice. Specifically, I will provide examples related to specific issues related to individual constraints in children and in particular the unique challenges facing coaches when individual constraints are changing due to growth and development. Part two focuses on understanding how cultural environmental constraints impact on children’s sport. This is an area that has received very little attention but plays a very important part in the long- term development of sporting expertise. Finally, I will look at how coaches can manipulate task constraints to create effective learning environments for young children.
Resumo:
Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting geno-centric or environmentalist positions, with an overriding focus on operational issues. In this thesis, the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multidisciplinary and integrative science focus is necessary, along with the development of a comprehensive multidisciplinary theoretical rationale. Dynamical systems theory is utilised as a multidisciplinary theoretical rationale for the succession of studies, capturing how multiple interacting constraints can shape the development of expert performers. Phase I of the research examines experiential knowledge of coaches and players on the development of fast bowling talent utilising qualitative research methodology. It provides insights into the developmental histories of expert fast bowlers, as well as coaching philosophies on the constraints of fast bowling expertise. Results suggest talent development programmes should eschew the notion of common optimal performance models and emphasize the individual nature of pathways to expertise. Coaching and talent development programmes should identify the range of interacting constraints that impinge on the performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms. Phase II of this research comprises three further studies that investigate several of the key components identified as important for fast bowling expertise, talent identification and development extrapolated from Phase I of this research. This multidisciplinary programme of work involves a comprehensive analysis of fast bowling performance in a cross-section of the Cricket Australia high performance pathways, from the junior, emerging and national elite fast bowling squads. Briefly, differences were found in trunk kinematics associated with the generation of ball speed across the three groups. These differences in release mechanics indicated the functional adaptations in movement patterns as bowlers’ physical and anatomical characteristics changed during maturation. Second to the generation of ball speed, the ability to produce a range of delivery types was highlighted as a key component of expertise in the qualitative phase. The ability of athletes to produce consistent results on different surfaces and in different environments has drawn attention to the challenge of measuring consistency and flexibility in skill assessments. Examination of fast bowlers in Phase II demonstrated that national bowlers can make adjustments to the accuracy of subsequent deliveries during performance of a cricket bowling skills test, and perform a range of delivery types with increased accuracy and consistency. Finally, variability in selected delivery stride ground reaction force components in fast bowling revealed the degenerate nature of this complex multi-articular skill where the same performance outcome can be achieved with unique movement strategies. Utilising qualitative and quantitative methodologies to examine fast bowling expertise, the importance of degeneracy and adaptability in fast bowling has been highlighted alongside learning design that promotes dynamic learning environments.
Resumo:
Background: Few studies have specifically investigated the functional effects of uncorrected astigmatism on measures of reading fluency. This information is important to provide evidence for the development of clinical guidelines for the correction of astigmatism. Methods: Participants included 30 visually normal, young adults (mean age 21.7 ± 3.4 years). Distance and near visual acuity and reading fluency were assessed with optimal spectacle correction (baseline) and for two levels of astigmatism, 1.00DC and 2.00DC, at two axes (90° and 180°) to induce both against-the-rule (ATR) and with-the-rule (WTR) astigmatism. Reading and eye movement fluency were assessed using standardized clinical measures including the test of Discrete Reading Rate (DRR), the Developmental Eye Movement (DEM) test and by recording eye movement patterns with the Visagraph (III) during reading for comprehension. Results: Both distance and near acuity were significantly decreased compared to baseline for all of the astigmatic lens conditions (p < 0.001). Reading speed with the DRR for N16 print size was significantly reduced for the 2.00DC ATR condition (a reduction of 10%), while for smaller text sizes reading speed was reduced by up to 24% for the 1.00DC ATR and 2.00DC condition in both axis directions (p<0.05). For the DEM, sub-test completion speeds were significantly impaired, with the 2.00DC condition affecting both vertical and horizontal times and the 1.00DC ATR condition affecting only horizontal times (p<0.05). Visagraph reading eye movements were not significantly affected by the induced astigmatism. Conclusions: Induced astigmatism impaired performance on selected tests of reading fluency, with ATR astigmatism having significantly greater effects on performance than did WTR, even for relatively small amounts of astigmatic blur of 1.00DC. These findings have implications for the minimal prescribing criteria for astigmatic refractive errors.
Resumo:
Performance of locomotor pointing tasks (goal-directed locomotion) in sport is typically constrained by dynamic factors, such as positioning of opponents and objects for interception. In the team sport of association football, performers have to coordinate their gait with ball displacement when dribbling and when trying to prevent opponent interception when running to kick a ball. This thesis comprises two studies analysing the movement patterns during locomotor pointing of eight experienced youth football players under static and dynamic constraints by manipulating levels of ball displacement (ball stationary or moving) and defensive pressure (defenders absent, or positioned near or far during performance). ANOVA with repeated measures was used to analyse effects of these task constraints on gait parameters during the run-up and cross performance sub-phase. Experiment 1 revealed outcomes consistent with previous research on locomotor pointing. When under defensive pressure, participants performed the run-up more quickly, concurrently modifying footfall placements relative to the ball location over trials. In experiment 2 players coordinated their gait relative to a moving ball significantly differently when under defensive pressure. Despite no specific task instructions being provided beforehand, context dependent constraints interacted to influence footfall placements over trials and running velocity of participants in different conditions. Data suggest that coaches need to manipulate task constraints carefully to facilitate emergent movement behaviours during practice in team games like football.
Resumo:
This study examined the perceptual attunement of relatively skilled individuals to physical properties of striking implements in the sport of cricket. We also sought to assess whether utilising bats of different physical properties influenced performance of a specific striking action: the front foot straight drive. Eleven, skilled male cricketers (mean age = 16.6 ± 0.3 years) from an elite school cricket development programme consented to participate in the study. Whist blindfolded, participants wielded six bats exhibiting different mass and moment of inertia (MOI) characteristics and were asked to identify their three most preferred bats for hitting a ball to a maximum distance by performing a front foot straight drive (a common shot in cricket). Next, participants actually attempted to hit balls projected from a ball machine using each of the six bat configurations to enable kinematic analysis of front foot straight drive performance with each implement. Results revealed that, on first choice, the two bats with the smallest mass and MOI values (1 and 2) were most preferred by almost two-thirds (63.7%) of the participants. Kinematic analysis of movement patterns revealed that bat velocity, step length and bat-ball contact position measures significantly differed between bats. Data revealed how skilled youth cricketers were attuned to the different bat characteristics and harnessed movement system degeneracy to perform this complex interceptive action.
Resumo:
Objectives The relationship between performance variability and accuracy in cricket fast bowlers of different skill levels under three different task conditions was investigated. Bowlers of different skill levels were examined to observe if they could adapt movement patterns to maintain performance accuracy on a bowling skills test. Design 8 national, 12 emerging and 12 junior pace bowlers completed an adapted version of the Cricket Australia bowling skills test, in which they performed 30 trials involving short (n = 10), good (n = 10), and full (n = 10) length deliveries. Methods Bowling accuracy was recorded by digitising ball position relative to the centre of a target. Performance measures were mean radial error (accuracy), variable error (consistency), centroid error (bias), bowling score and ball speed. Radial error changes across the duration of the skills test were used to record accuracy adjustment in subsequent deliveries. Results Elite fast bowlers performed better in speed, accuracy, and test scores than developing athletes. Bowlers who were less variable were also more accurate across all delivery lengths. National and emerging bowlers were able to adapt subsequent performance trials within the same bowling session for short length deliveries. Conclusions Accuracy and adaptive variability were key components of elite performance in fast bowling which improved with skill level. In this study, only national elite bowlers showed requisite levels of adaptive variability to bowl a range of lengths to different pitch locations.
Resumo:
Objectives: Adaptive patterning of human movement is context specific and dependent on interacting constraints of the performer–environment relationship. Flexibility of skilled behaviour is predicated on the capacity of performers to move between different states of movement organisation to satisfy dynamic task constraints, previously demonstrated in studies of visual perception, bimanual coordination, and an interceptive combat task. Metastability is a movement system property that helps performers to remain in a state of relative coordination with their performance environments, poised between multiple co-existing states (stable and distinct movement patterns or responses). The aim of this study was to examine whether metastability could be exploited in externally paced interceptive actions in fast ball sports, such as cricket. Design: Here we report data on metastability in performance of multi-articular hitting actions by skilled junior cricket batters (n = 5). Methods: Participants’ batting actions (key movement timings and performance outcomes) were analysed in four distinct performance regions varied by ball pitching (bounce) location. Results: Results demonstrated that, at a pre-determined distance to the ball, participants were forced into a meta-stable region of performance where rich and varied patterns of functional movement behaviours emerged. Participants adapted the organisation of responses, resulting in higher levels of variability in movement timing in this performance region, without detrimental effects on the quality of interceptive performance outcomes. Conclusions: Findings provide evidence for the emergence of metastability in a dynamic interceptive action in cricket batting. Flexibility and diversity of movement responses were optimised using experiential knowledge and careful manipulation of key task constraints of the specific sport context.