997 resultados para movement coordination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Shifting gaze and attention ahead of the hand is a natural component in the performance of skilled manual actions. Very few studies have examined the precise co-ordination between the eye and hand in children with Developmental Coordination Disorder (DCD). Methods This study directly assessed the maturity of eye-hand co-ordination in children with DCD. A double-step pointing task was used to investigate the coupling of the eye and hand in 7-year-old children with and without DCD. Sequential targets were presented on a computer screen, and eye and hand movements were recorded simultaneously. Results There were no differences between typically developing (TD) and DCD groups when completing fast single-target tasks. There were very few differences in the completion of the first movement in the double-step tasks, but differences did occur during the second sequential movement. One factor appeared to be the propensity for the DCD children to delay their hand movement until some period after the eye had landed on the target. This resulted in a marked increase in eye-hand lead during the second movement, disrupting the close coupling and leading to a slower and less accurate hand movement among children with DCD. Conclusions In contrast to skilled adults, both groups of children preferred to foveate the target prior to initiating a hand movement if time allowed. The TD children, however, were more able to reduce this foveation period and shift towards a feedforward mode of control for hand movements. The children with DCD persevered with a look-then-move strategy, which led to an increase in error. For the group of DCD children in this study, there was no evidence of a problem in speed or accuracy of simple movements, but there was a difficulty in concatenating the sequential shifts of gaze and hand required for the completion of everyday tasks or typical assessment items.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. Previous research has shown that children with Developmental Coordination Disorder (DCD) have poorly developed strategies for allocating attention. This study examines the allocation of attention and integration of visuo-spatial and motor systems in children with DCD in a motor (look+hit condition) and a motor-free (look condition) task. Method. Three groups of control children were used to compare the performance of a group of children with DCD. Children were seated in front of a central fixation point and six peripheral targets, and were asked to look at or hit targets when illuminated. Saccade/hand movement latencies were measured on gap trials (gap between fixation offset and target onset) and overlap trials (fixation offset and target onset overlapped). Results. DCD children were not slower than controls to disengage attention during the look condition. However, during the look+hit condition the DCD children showed a prolonged disengagement period, which was also seen in younger control children. Conclusions. The results suggest that DCD children may have deficits in the allocation of attention for action, in both the speed of onset of a movement and the accuracy of the movement. It is concluded that attention disengagement may contribute to problems of visuo-motor integration in DCD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We undertook this study to explore the degree of impairment in movement skills in children with autistic spectrum disorders (ASD) and a wide IQ range. Movement skills were measured using the Movement Assessment Battery for Children (M-ABC) in a large, well defined, population-derived group of children (n=101: 89 males,12 females; mean age 11y 4mo, SD 10mo; range 10y-14y 3mo) with childhood autism and broader ASD and a wide range of IQ scores. Additionally, we tested whether a parent-completed questionnaire, the Developmental Coordination Disorder Questionnaire (DCDQ), was useful in identifying children who met criteria for movement impairments after assessment (n=97 with complete M-ABCs and DCDQs). Of the children with ASD, 79% had definite movement impairments on the M-ABC; a further 10% had borderline problems. Children with childhood autism were more impaired than children with broader ASD, and children with an IQ less than 70 were more impaired than those with IQ more than 70. This is consistent with the view that movement impairments may arise from a more severe neurological impairment that also contributes to intellectual disability and more severe autism. Movement impairment was not associated with everyday adaptive behaviour once the effect of IQ was controlled for. The DCDQ performed moderately well as a screen for possible motor difficulties. Movement impairments are common in children with ASD. Systematic assessment of movement abilities should be considered a routine investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors addressed the hypothesis that economy in motor coordination is a learning phenomenon realized by both reduced energy cost for a given workload and more external work at the same prepractice metabolic and attentional energy expenditure. "Self-optimization" of movement parameters has been proposed to reflect learned motor adaptations that minimize energy costs. Twelve men aged 22.3 [+ or -] 3.9 years practiced a 90[degrees] relative phase, upper limb, independent ergometer cycling task at 60 rpm, followed by a transfer test of unpracticed (45 and 75 rpm) and self-paced cadences. Performance in all conditions was initially unstable, inaccurate, and relatively high in both metabolic and attentional energy costs. With practice, coordinative stability increased, more work was performed for the same metabolic and attentional costs, and the same work was done at a reduced energy cost. Self-paced cycling was initially below the metabolically optimal, but following practice at 60 rpm was closer to optimal cadence. Given the many behavioral options of the motor system in meeting a variety of everyday movement task goals, optimal metabolic and attentional energy criteria may provide a solution to the problem of selecting the most adaptive coordination and control parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the traditional dependent variables of motor skill learning are accuracy and consistency of movement outcome, there has been increasing interest in aspects of motor performance that are described as reflecting the ‘energetics’ of motor behaviour. One defining characteristic of skilled motor performance is the ability to complete the task with minimum energy expenditure (Sparrow & Newell, 1998). A further consideration is that movements also have costs in terms of cognitive ‘effort’ or ‘energy’. The present project extends previous work on energy expenditure and motor skill learning within a coordination dynamics framework. From the dynamic pattern perspective, a coordination pattern lowest on the 11KB model potential curve (Haken, Kelso & Bunz, 1985) is more stable and least energy is required to maintain pattern stability (Temprado, Zanone, Monno & Laurent, 1999). Two experiments investigated the learning of stable and unstable coordination patterns with high metabolic energy demand. An experimental task was devised by positioning two cycle ergometers side-by-side, placing one foot on each, with the pedals free to move independently at any metronome-paced relative phase, Experiment 1 investigated practice-related changes to oxygen consumption, heart rate, relative phase, reaction time and muscle activation (EMG) as participants practiced anti-phase, in-phase and 90°-phase cycling. Across six practice trials metabolic energy cost reduced and AE and VE of relative phase declined. The trend in the metabolic and reaction time data and percent co-contraction of muscles was for the in-phase cycling to demonstrate the highest values, anti-phase the lowest and 90°-phase cycling in-between. It was found that anti- and in-phase cycling were both kinematically stable but anti-phase coordination revealed significantly lower metabolic energy cost. It was, therefore, postulated that of two equally stable coordination patterns, that associated with lower metabolic energy expenditure would constitute a stronger attractor. Experiment 2 was designed to determine whether a lower or higher energy-demanding coordination pattern was a stronger attractor by scanning the attractor layout at thirty-degree intervals from 0° to 330°. The initial attractor layout revealed that in-phase was most stable and accurate, but the remaining coordination patterns were attracted to the low energy cost anti-phase cycling. In Experiment 2 only 90°- phase cycling was practiced with a post-test attractor layout scan revealing that 90°-phase and its symmetrical partner 270°-phase had become attractors of other coordination patterns. Consistent with Experiment 1, practicing 90°-phase cycling revealed a decline in AE and VE and a reduction in metabolic and cognitive cost. Practicing 90°-phase cycling did not, however, destabilise the in-phase or anti-phase coordination patterns either kinematically or energetically. In summary, the findings suggest that metabolic and mental energy can be considered different representations of a ‘global’ energy expenditure or ‘energetic’ phenomenon underlying human coordination. The hypothesis that preferred coordination patterns emerge as stable, low-energy solutions to the problem of inter-and intra-limb coordination is supported here in showing that the low-energy minimum of coordination dynamics is also an energetic minimum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to clarify whether a reduced ability to correct movements in-flight observed in children with developmental coordination disorder (DCD) reflects a developmental immaturity or deviance from the typical trajectory. Eighteen children with DCD (8–12 years), 18 age-matched controls, and 12 younger controls (5–7 years) completed a double-step reaching task. Compared to older controls, children with DCD and younger controls showed similarly prolonged reaching when the target unexpectedly shifted at movement onset and were equally slow to correct their reaching trajectory. These results suggest that impaired online control in DCD reflects developmental immaturity, possibly implicating the parietal-cerebellar cortices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
Although there are a number of plausible accounts to explain movement clumsiness in children [or developmental coordination disorder (DCD)], the cause(s) of the disorder remain(s) an issue of debate. One aspect of motor control that is particularly important to the fluid expression of skill is rapid online control (ROC). Data on DCD have been conflicting. While some recent work using double-step reaching suggests no difficulty in online control, others suggest deficits (e.g. based on sequential pointing). To help resolve this debate, we suggest two things: use of recent neuro-computational models as a framework for investigating motor control in DCD, and more rigorous investigation of double-step reaching. Our working assumption here is that ROC is only viable through the seamless integration of predictive (or forward) models of movement and feedback-based mechanisms.

Aim
The aim of this chronometric study was to explore ROC in children with DCD using a double-step reaching paradigm. We predicted slower online adjustments in DCD based on the argument that these children manifest a core difficulty in predictive control.

Methods
Participants were a group of 17 children with DCD and 27 typically developing children aged between 7 and 12 years. Visual targets were presented on a 17-inch LCD touch screen, inclined to an angle of 15° from horizontal. The children were instructed to press each target as it appeared as quickly and accurately as possible. For 80% of the trials, the central target location remained unchanged for the duration of the movement (non-jump trials), while for the remaining 20% of trials, the target jumped at movement onset to one of the two peripheral locations (jump trials). Reaction time (RT), movement time (MT) and reaching errors were recorded.

Results
For both groups, RT did not vary according to trial condition, while children with DCD were slower to initiate movement. Further, the MT of children with DCD was prolonged to a far greater extent on jump trials relative to controls, with a large effect size. As well, children with DCD committed significantly more errors, notably a reduced ability to inhibit central responses on jump trials.

Conclusion
Our findings help reconcile some disparate findings in the literature using similar tasks. The pattern of performance in children with DCD suggests impairment in the ability to make rapid online adjustments that are based on a predictive (or internal) model of the action. These results pave the way for future kinematic investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For children with Developmental Coordination Disorder (DCD), the real-time coupling between frontal executive function and online motor control has not been explored despite reported deficits in each domain. The aim of the present study was to investigate how children with DCD enlist online control under task constraints that compel the need for inhibitory control. A total of 129 school children were sampled from mainstream primary schools. Forty-two children who met research criteria for DCD were compared with 87 typically developing controls on a modified double-jump reaching task. Children within each skill group were divided into three age bands: younger (6-7 years), mid-aged (8-9), and older (10-12). Online control was compared between groups as a function of trial type (non-jump, jump, anti-jump). Overall, results showed that while movement times were similar between skill groups under simple task constraints (non-jump), on perturbation (or jump) trials the DCD group were significantly slower than controls and corrected trajectories later. Critically, the DCD group was further disadvantaged by anti-jump trials where inhibitory control was required; however, this effect reduced with age. While coupling online control and executive systems is not well developed in younger and mid-aged children, there is evidence of age-appropriate coupling in older children. Longitudinal data are needed to clarify this intriguing finding. The theoretical and applied implications of these results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different countries have different methods for assessing movement competence in children; however, it is unclear whether the test batteries that are used measure the same aspects of movement competence. The aim of this paper was to (1) investigate whether the Test of Gross Motor Development (TGMD-2) and Körperkoordinations Test für Kinder (KTK) measure the same aspects of children’s movement competence and (2) examine the factorial structure of the TGMD-2 and KTK in a sample of Australian children. A total of 158 children participated (M age = 9.5; SD = 2.2). First, confirmatory factor analysis examined the independent factorial structure of the KTK and TGMD-2. Second, it was investigated whether locomotor, object control and body coordination loaded on the latent variable Movement Competency. Confirmatory factor analysis indicated an adequate fit for both the KTK and TGMD-2. An adequate fit was also achieved for the final model. In this model, locomotor (r = .86), object control (r = .71) and body coordination (r = .52) loaded on movement competence. Findings support our hypothesis that the TGMD-2 and KTK measure discrete aspects of movement competence. Future researchers and practitioners should consider using a wider range of test batteries to assess movement competence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence indicates that the ability to correct reaching movements in response to unexpected target changes (i.e., online control) is reduced in children with developmental coordination disorder (DCD). Recent computational modeling of human reaching suggests that these inefficiencies may result from difficulties generating and/or monitoring internal representations of movement. This study was the first to test this putative relationship empirically. We did so by investigating the degree to which the capacity to correct reaching mid-flight could be predicted by motor imagery (MI) proficiency in a sample of children with probable DCD (pDCD). Thirty-four children aged 8 to 12 years (17 children with pDCD and 17 age-matched controls) completed the hand rotation task, a well-validated measure of MI, and a double-step reaching task (DSRT), a protocol commonly adopted to infer one's capacity for correcting reaching online. As per previous research, children with pDCD demonstrated inefficiencies in their ability to generate internal action representations and correct their reaching online, demonstrated by inefficient hand rotation performance and slower correction to the reach trajectory following unexpected target perturbation during the DSRT compared to age-matched controls. Critically, hierarchical moderating regression demonstrated that even after general reaching ability was controlled for, MI efficiency was a significant predictor of reaching correction efficiency, a relationship that was constant across groups. Ours is the first study to provide direct pilot evidence in support of the view that a decreased capacity for online control of reaching typical of DCD may be associated with inefficiencies generating and/or using internal representations of action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of attentional focus in bimanual coordination was investigated from a developmental perspective by examining performance of right- and left-handed children, 5-8-years and 9-12-years old, on bimanual reciprocal tapping tasks. Attentional focus was either specified, by asking the children to attend to the preferred or to the non-preferred hand, or unspecified for the execution of the tasks. When attention was oriented to the non-preferred hand we found a reduced movement time and a lower frequency of errors. Performance differences for handedness and age-groups were observed when the children were oriented to attend to the preferred hand or when there was no instruction regarding attention. These differences in performance were eliminated when attention was oriented to the non-preferred hand. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamical systems approach to the study of locomotor intralimb coordination in those with hemiparesis led to an examination of the utility of the shank-thigh relative phase (RP) as a collective variable and the identification of potential constraints that may shape this coordination. Eighteen non-disabled individuals formed three groups matched to the age and gender of six participants with chronic right hemiparesis. The three groups differed in the constraints imposed on their walking: (1) walking at their preferred walking speed; (2) walking as slowly as those with hemiparesis; and, (3) walking slowly with a right ankle-foot orthosis (AFO). The results revealed an asymmetry in intralimb coordination between the unaffected and affected leg of those with hemiparesis localized to the latter third of the gait cycle when the limb is advanced from the end of stance to the reestablishment of a new stance. Walking slowly with or without an AFO resulted in no measureable effect in the non-disabled, but accounts for 22% of the variance in the intralimb coordination of the hemiplegic's affected limb and 16% in the unaffected limb. The AFO offered little additional contribution. These results derive from shank-thigh RP that is shown to provide more information about intralimb coordination than knee angle displacement. Implications for these results and the use of RP for rehabilitation are discussed. (C) 2000 Elsevier B.V. B.V. All rights reserved. PsycINFO classification. 3297. 2330.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN. Observational cohort study. OBJECTIVE. To investigate spinal coordination during preferred and fast speed walking in pain-free subjects with and without a history of recurrent low back pain (LBP). SUMMARY OF BACKGROUND DATA. Dynamic motion of the spine during walking is compromised in the presence of back pain (LBP), but its analysis often presents some challenges. The coexistence of significant symptoms may change gait because of pain or adaptation of the musculoskeletal structures or both. A history of LBP without the overlay of a current symptomatic episode allows a better model in which to explore the impact on spinal coordination during walking. METHODS. Spinal and lower limb segmental motions were tracked using electromagnetic sensors. Analyses were conducted to explore the synchrony and spatial coordination of the segments and to compare the control and subjects with LBP. RESULTS. We found no apparent differences between the groups for either overall amplitude of motion or most indicators of coordination in the lumbar region; however, there were significant postural differences in the mid-stance phase and other indicators of less phase locking in controls compared with subjects with LBP. The lower thoracic spinal segment was more affected by the history of back pain than the lumbar segment. CONCLUSION. Although small, there were indicators that alterations in spinal movement and coordination in subjects with recurrent LBP were due to adaptive changes rather than the presence of pain. © 2013, Lippincott Williams & Wilkins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The relationship between normal and tangential force components (grip force - GF and load force - LF, respectively) acting on the digits-object interface during object manipulation reveals neural mechanisms involved in movement control. Here, we examined whether the feedback type provided to the participants during exertion of LF would influence GF-LF coordination and task performance. Methods. Sixteen young (24.7 ±3.8 years-old) volunteers isometrically exerted continuously sinusoidal FZ (vertical component of LF) by pulling a fixed instrumented handle up and relaxing under two feedback conditions: targeting and tracking. In targeting condition, FZ exertion range was determined by horizontal lines representing the upper (10 N) and lower (1 N) targets, with frequency (0.77 or 1.53 Hz) dictated by a metronome. In tracking condition, a sinusoidal template set at similar frequencies and range was presented and should be superposed by the participants' exerted FZ. Task performance was assessed by absolute errors at peaks (AEPeak) and valleys (AEValley) and GF-LF coordination by GF-LF ratios, maximum cross-correlation coefficients (r max), and time lags. Results: The results revealed no effect of feedback and no feedback by frequency interaction on any variable. AE Peak and GF-LF ratio were higher and rmax lower at 1.53 Hz than at 0.77 Hz. Conclusion: These findings indicate that the type of feedback does not influence task performance and GF-LF coordination. Therefore, we recommend the use of tracking tasks when assessing GF-LF coordination during isometric LF exertion in externally fixed instrumented handles because they are easier to understand and provide additional indices (e.g., RMSE) of voluntary force control. © 2013 Pedão et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developmental Coordination Disorder (DCD), a chronic and usually permanent condition found in children, is characterized by motor impairment that interferes with a child's activities of daily living and with academic achievement. One of the most popular tests for the quantitative diagnosis of DCD is the Movement Assessment Battery for Children (MABC). Based on the Battery's standardized scores, it is possible to identify children with typical development, children at risk of developing DCD, and children with DCD. This article describes a computational system we developed to assist with the analysis of results obtained in the MABC test. The tool was developed for the web environment and its database provides integration of MABC data. Thus, researchers around the world can share data and develop collaborative work in the DCD field. In order to help analysis processes, our system provides services for filtering data to show more specific sets of information and present the results in textual, table, and graphic formats, allowing easier and more comprehensive evaluation of the results.