933 resultados para motor cortex complex
Resumo:
BACKGROUND AND PURPOSE: There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract, and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. MATERIALS AND METHODS: T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. RESULTS: When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. CONCLUSION: The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.
Resumo:
Kallmann syndrome (KS), characterized by the association of hypogonadotropic hypogonadism and anosmia, may present many other phenotypic abnormalities, including neurologic features as involuntary movements, called mirror movements (MM). MM etiology probably involves a complex mechanism comprising corticospinal tract abnormal development associated with deficient contralateral motor cortex inhibitory system. In this study, in order to address previous hypotheses concerning MM etiology, we identified and quantified white matter (WM) alterations in 21 KS patients, comparing subjects with and without MM and 16 control subjects, using magnetization transfer ratio (MTR) and T2 relaxometry (R2). Magnetization transfer and 12 double-echo images were acquired in a 1.5 T system. MTR and R2 were calculated pixel by pixel to initially create individual maps, and then, group average maps, co-registered with MNI305 stereotaxic coordinate system. After analysis of selected regions of interest, we demonstrated areas with higher 12 relaxation time and lower MTR values in KS patients, with and without MM, differently involving corticospinal tract projection, frontal lobes and corpus callosum. Higher MTR was observed only in pyramidal decussation when compared in both groups of patients with controls. In conclusion, we demonstrated that patients with KS have altered WM areas, presenting in a different manner in patients with and without MM. These data suggest axonal loss or disorganization involving abnormal pyramidal tracts and other associative/connective areas, relating to the presence or absence of MM. We also found a different pattern of alteration in pyramidal decussation, which can represent the primary area of neuronal disarrangement. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background and Purpose-Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. Methods-Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary and supplementary motor areas of both hemispheres. Statistical maps were obtained by the conventional General Linear Model and by a parametric General Linear Model. Results-Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both primary and supplementary motor areas was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional General Linear Model analysis failed to detect brain activation during movement of the paretic hand. However, the proposed parametric General Linear Model corrected the misdetection problem and showed robust activation in both primary and supplementary motor areas. Conclusions-The use of data analysis tools that are built on the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in patients with stroke. The present data urge the use of caution when relying on the BOLD response as a marker of brain reorganization in patients with stroke. (Stroke. 2010; 41:1921-1926.)
Resumo:
The basal dendritic arbors of over 500-layer III pyramidal neurones of the macaque cortex were compared by fractal analyses, which provides a measure of the space filling (or branching pattern) of dendritic arbors. Fractal values (D) of individual cells were compared between the cytochrome oxidase (CO)-rich blobs and CO-poor interblobs, of middle and upper layer III, and between sublaminae, in the primary visual area (Vi). These data were compared with those in the CO compartments in the second visual area (V2), and seven other extrastriate cortical areas. (V4, MT, LIP, 7a, TEO, TE and STP). There were significant differences in the fractal dimensions, and therefore the dendritic branching patterns, of cells in striate and extrastriate areas. Of the 55 possible pairwise comparisons of fractal dimension of neurones in different cortical areas (or CO compartments), 39 proved to be significantly different. The markedly different morphologies of pyramidal cells in the different cortical areas may be one of the features that determine the functional signatures of these cells by influencing the number of inputs received by, and propagation of potentials through, their dendritic arbors.
Resumo:
Recent studies have revealed striking differences in pyramidal cell structure among cortical regions involved in the processing of different functional modalities. For example, cells involved in visual processing show systematic variation, increasing in morphological complexity with rostral progression from V1 through extrastriate areas. Differences have also been identified between pyramidal cells in somatosensory, motor and prefrontal cortex, but the extent to which the pyramidal cell phenotype may vary between these functionally related cortical regions remains unknown. In the present study we investigated the structure of layer III pyramidal cells in somatosensory and motor areas 3b, 4, 5, 6 and 7b of the macaque monkey. Cells were intracellularly injected in fixed, flat-mounted cortical slices and analysed for morphometric parameters. The size of the basal dendritic arbours, the number of their branches and their spine density were found to vary systematically between areas. Namely, we found a trend for increasing complexity in dendritic arbour structure through areas 3b, 5 and 7b. A similar trend occurred through areas 4 and 6. The differences in arbour structure may determine the number of inputs received by neurons and may thus be an important factor in determining function at the cellular and systems level.
Resumo:
Background: Human neuronal protein (hNP22) is a gene with elevated messenger RNA expression in the prefrontal cortex of the human alcoholic brain. hNP22 has high homology with a rat protein (rNP22). These proteins also share homology with a number of cytoskeleton-interacting proteins. Methods: A rabbit polyclonal antibody to an 18-amino acid epitope was produced for use in Western and immunohistochemical analysis. Samples from the human frontal and motor cortices were used for Western blots (n = 10), whereas a different group of frontal cortex and hippocampal samples were obtained for immunohistochemistry (n = 12). Results: The hNP22 antibody detected a single protein in both rat and human brain. Western blots revealed a significant increase in hNP22 protein levels in the frontal cortex but not the motor cortex of alcoholic cases. Immunohistochemical studies confirmed the increased hNP22 protein expression in all cortical layers. This is consistent with results previously obtained using Northern analysis. Immunohistochemical analysis also revealed a significant increase of hNP22 immunoreactivity in the CA3 and CA4 but not other regions of the hippocampus. Conclusions: It is possible that this protein may play a role in the morphological or plastic changes observed after chronic alcohol exposure and withdrawal, either as a cytoskeleton-interacting protein or as a signaling molecule.
Resumo:
Objetivos – Um dos principais objetivos da neurociência tem sido, desde sempre, compreender as funcionalidades do cérebro. A introdução da ressonância magnética funcional contribuiu em grande escala para o desenvolvimento do estudo cerebral. Assim, esta investigação tem como principal objetivo identificar e desenhar os diferentes perfis de localizações cerebrais, a nível do córtex motor, numa população jovem saudável, permitindo, assim, um maior conhecimento nesta área e dando um contributo à área da neurologia. Material e métodos – Foi realizado um estudo de ressonância magnética funcional em 30 indivíduos saudáveis numa clínica de imagiologia médica. Para tal recorreu-se a equipamento adequado para a recolha de dados. O paradigma motor utilizado foi o movimento dos dedos das mãos. Através das imagens obtidas foi medida a área de cada região ativa. Com o suporte do programa SPSS (versão 19) todos os valores foram tratados estatisticamente. Conclusão – Após todo este processo concluiu-se que a área do cérebro maioritariamente ativa, no momento do paradigma motor, encontra-se no hemisfério esquerdo.
Resumo:
Introduction : Driving is a complex everyday task requiring mechanisms of perception, attention, learning, memory, decision making and action control, thus indicating that involves numerous and varied brain networks. If many data have been accumulated over time about the effects of alcohol consumption on driving capability, much less is known about the role of other psychoactive substances, such as cannabis (Chang et al.2007, Ramaekers et al, 2006). Indeed, the solicited brain areas during safe driving which could be affected by cannabis exposure have not yet been clearly identified. Our aim is to study these brain regions during a tracking task related to driving skills and to evaluate the modulation due to the tolerance of cannabis effects. Methods : Eight non-smoker control subjects participated to an fMRI experiment based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. Half of the active tracking conditions included randomly presented traffic lights as distractors. Subjects were asked to track with a joystick with their right hand and to press a button with their left index at each appearance of a distractor. Four smoking subjects participated to the same fMRI sessions once before and once after smoking cannabis and a placebo in two independent cross-over experiments. We quantified the performance of the subjects by measuring the precision of the behavioural responses (i.e. percentage of time of correct tracking and reaction times to distractors). Functional MRI data were acquired using on a 3.0T Siemens Trio system equipped with a 32-channel head coil. BOLD signals will be obtained with a gradient-echo EPI sequence (TR=2s, TE=30ms, FoV=216mm, FA=90°, matrix size 72×72, 32 slices, thickness 3mm). Preprocessing, single subject analysis and group statistics were conducted on SPM8b. Results were thresholded at p<0.05 (FWE corrected) and at k>30 for spatial extent. Results : Behavioural results showed a significant impairment in task and cognitive test performance of the subjects after cannabis inhalation when comparing their tracking accuracy either to the controls subjects or to their performances before the inhalation or after the placebo inhalation (p<0.001 corrected). In controls, fMRI BOLD analysis of the active tracking condition compared to the passive one revealed networks of polymodal areas in superior frontal and parietal cortex dealing with attention and visuo-spatial coordination. In accordance to what is known of the visual and sensory motor networks we found activations in V4, frontal eye-field, right middle frontal gyrus, intra-parietal sulcus, temporo-parietal junction, premotor and sensory-motor cortex. The presence of distractors added a significant activation in the precuneus. Preliminary results on cannabis smokers in the acute phase, compared either to themselves before the cannabis inhalation or to control subjects, showed a decreased activation in large portions of the frontal and parietal attention network during the simple tracking task, but greater involvement of precuneus, of the superior part of intraparietal sulcus and middle frontal gyrus bilaterally when distractors were present in the task. Conclusions : Our preliminary results suggest that acute cannabis smoking alters performances and brain activity during active tracking tasks, partly reorganizing the recruitment of brain areas of the attention network.
Resumo:
Action-related sounds are known to increase the excitability of motoneurones within the primary motor cortex (M1), but the role of this auditory input remains unclear. We investigated repetition priming-induced plasticity, which is characteristic of semantic representations, in M1 by applying transcranial magnetic stimulation pulses to the hand area. Motor evoked potentials (MEPs) were larger while subjects were listening to sounds related versus unrelated to manual actions. Repeated exposure to the same manual-action-related sound yielded a significant decrease in MEPs when right, hand area was stimulated; no repetition effect was observed for manual-action-unrelated sounds. The shared repetition priming characteristics suggest that auditory input to the right primary motor cortex is part of auditory semantic representations.
Resumo:
We have demonstrated that cortical cell autografts might be a useful therapy in two monkey models of neurological disease: motor cortex lesion and Parkinson's disease. However, the origin of the useful transplanted cells obtained from cortical biopsies is not clear. In this report we describe the expression of doublecortin (DCX) in these cells based on reverse-transcription polymerase chain reaction (RT-PCR) and immunodetection in the adult primate cortex and cell cultures. The results showed that DCX-positive cells were present in the whole primate cerebral cortex and also expressed glial and/or neuronal markers such as glial fibrillary protein (GFAP) or neuronal nuclei (NeuN). We also demonstrated that only DCX/GFAP positive cells were able to proliferate and originate progenitor cells in vitro. We hypothesize that these DCX-positive cells in vivo have a role in cortical plasticity and brain reaction to injury. Moreover, in vitro these DCX-positive cells have the potential to reacquire progenitor characteristics that confirm their potential for brain repair.
Resumo:
Whether different brain networks are involved in generating unimanual responses to a simple visual stimulus presented in the ipsilateral versus contralateral hemifield remains a controversial issue. Visuo-motor routing was investigated with event-related functional magnetic resonance imaging (fMRI) using the Poffenberger reaction time task. A 2 hemifield x 2 response hand design generated the "crossed" and "uncrossed" conditions, describing the spatial relation between these factors. Both conditions, with responses executed by the left or right hand, showed a similar spatial pattern of activated areas, including striate and extrastriate areas bilaterally, SMA, and M1 contralateral to the responding hand. These results demonstrated that visual information is processed bilaterally in striate and extrastriate visual areas, even in the "uncrossed" condition. Additional analyses based on sorting data according to subjects' reaction times revealed differential crossed versus uncrossed activity only for the slowest trials, with response strength in infero-temporal cortices significantly correlating with crossed-uncrossed differences (CUD) in reaction times. Collectively, the data favor a parallel, distributed model of brain activation. The presence of interhemispheric interactions and its consequent bilateral activity is not determined by the crossed anatomic projections of the primary visual and motor pathways. Distinct visuo-motor networks need not be engaged to mediate behavioral responses for the crossed visual field/response hand condition. While anatomical connectivity heavily influences the spatial pattern of activated visuo-motor pathways, behavioral and functional parameters appear to also affect the strength and dynamics of responses within these pathways.
Resumo:
There is growing interest in understanding the role of the non-injured contra-lateral hemisphere in stroke recovery. In the experimental field, histological evidence has been reported that structural changes occur in the contra-lateral connectivity and circuits during stroke recovery. In humans, some recent imaging studies indicated that contra-lateral sub-cortical pathways and functional and structural cortical networks are remodeling, after stroke. Structural changes in the contra-lateral networks, however, have never been correlated to clinical recovery in patients. To determine the importance of the contra-lateral structural changes in post-stroke recovery, we selected a population of patients with motor deficits after stroke affecting the motor cortex and/or sub-cortical motor white matter. We explored i) the presence of Generalized Fractional Anisotropy (GFA) changes indicating structural alterations in the motor network of patientsâeuro? contra-lateral hemisphere as well as their longitudinal evolution ii) the correlation of GFA changes with patientsâeuro? clinical scores, stroke size and demographics data iii) and a predictive model.
Resumo:
Does a conflict between inborn motor preferences and educational standards during childhood impact the structure of the adult human brain? To examine this issue, we acquired high-resolution T1-weighted magnetic resonance scans of the whole brain in adult "converted" left-handers who had been forced as children to become dextral writers. Analysis of sulcal surfaces revealed that consistent right- and left-handers showed an interhemispheric asymmetry in the surface area of the central sulcus with a greater surface contralateral to the dominant hand. This pattern was reversed in the converted group who showed a larger surface of the central sulcus in their left, nondominant hemisphere, indicating plasticity of the primary sensorimotor cortex caused by forced use of the nondominant hand. Voxel-based morphometry showed a reduction of gray matter volume in the middle part of the left putamen in converted left-handers relative to both consistently handed groups. A similar trend was found in the right putamen. Converted subjects with at least one left-handed first-degree relative showed a correlation between the acquired right-hand advantage for writing and the structural changes in putamen and pericentral cortex. Our results show that a specific environmental challenge during childhood can shape the macroscopic structure of the human basal ganglia. The smaller than normal putaminal volume differs markedly from previously reported enlargement of cortical gray matter associated with skill acquisition. This indicates a differential response of the basal ganglia to early environmental challenges, possibly related to processes of pruning during motor development.
Resumo:
Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.
Resumo:
Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician"s brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.