946 resultados para monitor
Resumo:
Attempts were made to measure the fraction of elemental carbon (EC) in ultrafine aerosol by modifying an Ambient Carbonaceous Particulate Monitor (ACPM, R&P 5400). The main modification consisted in placing a quartz filter in one of the sampling lines of this dual-channel instrument. With the filter all aerosol and EC contained in it is collected, while in the other line of the instrument the standard impactor samples only particles larger than 0.14 μm. The fraction of EC in particles smaller than 0.14 μm is derived from the difference in concentration as measured via the two sampling lines. Measurements with the modified instrument were made at a suburban site in Amsterdam, The Netherlands. An apparent adsorption artefact, which could not be eliminated by the use of denuders, precluded meaningful evaluation of the data for total carbon. Blanks in the measurements of EC were negligible and the EC data were hence further evaluated. We found that the concentration of EC obtained via the channel with the impactor was systematically lower than that in the filter-line. The average ratio of the concentrations was close to 0.6, which indicates that approximately 40% of the EC was in particles smaller than 0.14 μm. Alternative explanations for the difference in the concentration in the two sampling lines could be excluded, such as a difference in the extent of oxidation. This should be a function of loading, which is not the case. Another reason for the difference could be that less material is collected by the impactor due to rebound, but such bounce of aerosol is very unlikely in The Netherlands due to co-deposition of abundant deliquesced and thus viscous ammonium compounds. The conclusion is that a further modification to assess the true fraction of ultrafine EC, by installing an impactor with cut-off diameter at 0.1 μm, would be worth pursuing. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The social and economic benefits of the coastal zone make it one of the most treasured environments on our planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer. However, coastal management is challenged by inadequate sampling of key environmental indicators, partly due to issues relating to cost of data collection. Here, we investigate the use of recreational surfers as platforms to improve sampling coverage of environmental indicators in the coastal zone. We equipped a recreational surfer, based in the south west United Kingdom (UK), with a temperature sensor and Global Positioning System (GPS) device that they used when surfing for a period of one year (85 surfing sessions). The temperature sensor was used to derive estimates of sea-surface temperature (SST), an important environmental indicator, and the GPS device used to provide sample location and to extract information on surfer performance. SST data acquired by the surfer were compared with data from an oceanographic station in the south west UK and with satellite observations. Our results demonstrate: (i) high-quality SST data can be acquired by surfers using low cost sensors; and (ii) GPS data can provide information on surfing performance that may help motivate data collection by surfers. Using recent estimates of the UK surfing population, and frequency of surfer participation, we speculate around 40 million measurements on environmental indicators per year could be acquired at the UK coastline by surfers. This quantity of data is likely to enhance coastal monitoring and aid UK coastal management. Considering surfing is a world-wide sport, our results have global implications and the approach could be expanded to other popular marine recreational activities for coastal monitoring of environmental indicators.
Ultrasonic Tests to Monitor Cure of Dicyclopentadiene (DCPD) for Use in Reactive Rotational Moulding
Ultrasonic Tests to Monitor Cure of Dicyclopentadiene (DCPD) for use in Reactive Rotational Moulding