988 resultados para molecular sieve
Resumo:
Framework titanium in Ti-silicalite-1 (TS-1) zeolite was selectively identified by its resonance Raman bands using ultraviolet (W) Raman spectroscopy. Raman spectra of the TS-1 and silicalite-1 zeolites were obtained and compared using continuous wave laser lines at 244, 325, and 488 nm as the excitation sources. It was only with the excitation at 244 nm that resonance enhanced Raman bands at 490, 530, and 1125 cm(-1) appeared exclusively for the TS-1 zeolite. Furthermore, these bands increased in intensity with the crystallization time of the TS-1 zeolite. The Raman bands at 490, 530, and 1125 cm(-1) are identified as the framework titanium species because they only appeared when the laser excites the charge-transfer transition of the framework titanium species in the TS-1. No resonance Raman enhancement was detected for the bands of silicalite-1 zeolite and for the band at 960 cm(-1) of TS-1 with any of the excitation sources ranging from the visible tb UV regions. This approach can be applicable for the identification of other transition metal ions substituted in the framework of a zeolite or any other molecular sieve.
Resumo:
Agonist-promoted desensitization of adenylate cyclase is intimately associated with phosphorylation of the beta-adrenergic receptor in mammalian, avian, and amphibian cells. However, the nature of the protein kinase(s) involved in receptor phosphorylation remains largely unknown. We report here the identification and partial purification of a protein kinase capable of phosphorylating the agonist-occupied form of the purified beta-adrenergic receptor. The enzyme is prepared from a supernatant fraction from high-speed centrifugation of lysed kin- cells, a mutant of S49 lymphoma cells that lacks a functional cAMP-dependent protein kinase. The beta-agonist isoproterenol induces a 5- to 10-fold increase in receptor phosphorylation by this kinase, which is blocked by the antagonist alprenolol. Fractionation of the kin- supernatant on molecular-sieve HPLC and DEAE-Sephacel results in a 50- to 100-fold purified beta-adrenergic receptor kinase preparation that is largely devoid of other protein kinase activities. The kinase activity is insensitive to cAMP, cGMP, cAMP-dependent kinase inhibitor, Ca2+-calmodulin, Ca2+-phospholipid, and phorbol esters and does not phosphorylate general kinase substrates such as casein and histones. Phosphate appears to be incorporated solely into serine residues. The existence of this novel cAMP-independent kinase, which preferentially phosphorylates the agonist-occupied form of the beta-adrenergic receptor, suggests a mechanism that may explain the homologous or agonist-specific form of adenylate cyclase desensitization. It also suggests a general mechanism for regulation of receptor function in which only the agonist-occupied or "active" form of the receptor is a substrate for enzymes inducing covalent modification.
Resumo:
In the present study, the activated carbon is produced using phosphoric acid treatment of the waste bamboo scaffolding and activated at either 400 or 600 °C. The effect of acid to bamboo ratio (Xp) up to 2.4 has been studied. The BET surface area increased with increasing Xp and activating temperature. BET surface area up to 2500 m2/g carbon has been produced. In order to simulate effluent treatment from textile industry, the produced carbon was tested for its dye adsorption capacities. Two acid dyes with different molecular sizes were used, namely Acid Yellow 117 (AY117) and Acid Blue 25 (AB25). In a single component system, it was found that dye with smaller molecular size, AB25, was readily adsorbed onto the carbon while the larger size dye, AY117, showed little adsorption. As a result, it is possible to tailor-make the carbon for the adsorption of dye mixtures in industrial applications, especially textile dyeing, i.e. molecular sieve effect. A binary AY117–AB25 mixture was used to test the possibility of the molecular sieve effect. Furthermore, experimental results were fitted to equilibrium isotherm models, Langmuir, Freundlich and Sips for the single component system. For the binary component system, extended single-component equilibrium isotherm models were used to predict the experimental data.
Resumo:
Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.
Resumo:
Spiro-starburst-structures with symmetric globular structures in forms of first and second generations that readily form stable amorphous glasses have been synthesized and then characterised in this work. During the synthesis of these materials, possibilities of the extension of the chains of the phenyl rings in 2,2’,7 and 7’-positions of the central core of the spirobifluorene as well as the 2’,7 and 7’-positions of the terminal spirobifluorene units of the spiro-starburst-structures have been investigated so that solubilities and morphologies of the compounds are not negatively influenced. Their morphological properties have been explored by recording their decomposition temperature and glass transition temperature. These compounds possessing two perpendicular arrangement of the two molecular halves show high glass transition temperature (Tg), which is one of the most important parameter indicating the stability of the amorphous state of the material for optoelectronic devices like organic light emitting diodes. Within the species of second generation compounds, for example, 4-spiro3 shows the highest Tg (330 °C) and the highest branching degree. When one [4B(SBF)SBF-SBF 84] or two [4SBFSBF-SBF 79] terminal spirobifluorene units are removed, the Tg decreases to 318 °C and 307 °C respectively. Photo absorption and fluorescence spectra and cyclic voltammetry measurements are taken in account to characterize the optoelectronic properties of the compounds. Spiro-starburst-structures emit radiation in the blue region of the visible spectrum. The peak maxima of absorption and emission spectra are observed to be at higher wavelength in the molecules with longer chromophore chains than in the molecules with shorter chromophore chains. Excitation spectra are monitored with their emission peak maxima. The increasing absorbing species in molecule leads to increasing molar extinction coefficient. In the case of 4B(TP)SBF-SBF 53 and 4B(SBF)SBF-SBF 84, the greater values of the molar extinction coefficients (43*104 and 44*104 L mol-1 cm-1 respectively) are the evidences of the presence of four times octiphenyl conjugation rings and eight times terminal fluorene units respectively. The optical properties of solid states of these compounds in the form of thin film indicate that the intermolecular interaction and aggregation of individual molecules in neat amorphous films are effectively hindered by their sterically demanding structures. Accordingly, in solid state, they behave like isolated molecules in highly dilute solution. Cyclic voltammetry measurements of these compounds show electrochemically reversibility and stability. Furthermore, the zeolitic nature (host-guest) of the molecular sieve of the synthesized spiro-starburst-structures has been analysed by thermogravimetric analysis method.
Resumo:
Wydział Chemii
Resumo:
heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke
Resumo:
The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.
Resumo:
During natural gas processing, water removal is considered as a fundamental step in that combination of hydrocarbons and water favors the formation of hydrates. The gas produced in the Potiguar Basin (Brazil) presents high water content (approximately 15000 ppm) and its dehydration is achieved via absorption and adsorption operations. This process is carried out at the Gas Treatment Unit (GTU) in Guamaré (GMR), in the State of Rio Grande do Norte. However, it is a costly process, which does not provide satisfactory results when water contents as low as 0.5 ppm are required as the exit of the GTU. In view of this, microemulsions research is regarded as an alternative to natural gas dehydration activities. Microemulsions can be used as desiccant fluids because of their unique proprieties, namely solubilization enhancement, reduction in interfacial tensions and large interfacial area between continuous and dispersed phases. These are actually important parameters to ensure the efficiency of an absorption column. In this work, the formulation of the desiccant fluid was determined via phases diagram construction, employing there nonionic surfactants (RDG 60, UNTL L60 and AMD 60) and a nonpolar fluid provided by Petrobras GMR (Brazil) typically comprising low-molecular weight liquid hydrocarbons ( a solvent commonly know as aguarrás ). From the array of phases diagrams built, four representative formulations have been selected for providing better results: 30% RDG 60-70% aguarrás; 15% RDG 60-15% AMD 60-70% aguarrás, 30% UNTL L60-70% aguarrás, 15% UNTL L60-15% AMD 60-70% aguarrás. Since commercial natural gas is already processed, and therefore dehydrated, it was necessary to moister some sample prior to all assays. It was then allowed to cool down to 13ºC and interacted with wet 8-12 mesh 4A molecular sieve, thus enabling the generation of gas samples with water content (approximately 15000 ppm). The determination of the equilibrium curves was performed based on the dynamic method, which stagnated liquid phase and gas phase at a flow rate of 200 mL min-1. The hydrodynamic study was done with the aim of established the pressure drop and dynamic liquid hold-up. This investigation allowed are to set the working flow rates at 840 mL min-1 for the gas phase and 600 mLmin-1 for the liquid phase. The mass transfer study indicated that the system formed by UNTL L60- turpentine-natural gas the highest value of NUT
Resumo:
Due to environmental restrictions around the world, clean catalytic technology are of fundamental importance in the petrochemical industry and refineries. Creating the face of this a great interest in replacing the liquid acids for solid acids, so as molecular sieves have been extensively studied in reactions involving the acid catalysis to produce chemical substances with a high potential of quality. Being the activity of the catalysts involved in the reaction attributed to the acid character of them involved for the Lewis and Brönsted acid sites. Based on this context, this study aimed to prepare catalysts acids using a molecular sieve silicoalumino-phosphate (SAPO-11) synthesized in hidrotermical conditions and sulphated with sulphuric acid at different concentrations, using to it the method of controlled impregnating. The samples resulting from this process were characterized by x-ray difratometry (DRX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG-DTG) and determination of total acidity (by n-butilamin adsorption). The results show that the synthesis method used was efficient in the formation of AEL structure of SAPO-11 and when being incorporated the sulfate groups in this structure the acidity of the material was increased, pointing out that to very high concentrations of acid there is a trend of decrease the main peaks that form the structure. Finally they were tested catalytictly by the reaction model of conversion of m-xylene which showed favorable results of conversion for this catalyst, showing to be more selective of cracking products than isomerization, as expected, in order that for the o-xylene selectivity there was no positive change when to sulfate a sample of SAPO-11, while for light gases of C1-C4 this selectivity was remarkably observed
Resumo:
The groundwater pollution arising due to fuel leaks gas stations has presented a problem aggravating. Increasingly studies related to environmental problems such accidents and seek to propose some solutions for the treatment of groundwater and soils that are contaminated by gasoline. This study evaluated the use of molecular sieve TiSBA-15 as a catalyst for the reaction of removing of volatile organic compounds, particularly benzene, toluene, ethylbenzene and xylenes, known as BTEX, one of the main pollutants found in groundwater. The catalyst was synthesized by the method post-synthesis techniques and characterized by XSD, TG/DTG, adsorption/desorption of N2, XRF-EDX, for checking the incorporation of titanium and formation of the structure of the catalyst. The reaction occurred with the presence of hydrogen peroxide, H2O2, in aqueous medium to form hydroxyl radicals, which are needed in the process of removal of BTEX compounds. The catalytic reaction was carried out for 5 hours at 60 °C, pH to 3.0, and analyzes of the compounds were made in a gas chromatograph with a flame detection means photoionization static headspace (HS-GC-PID). The catalytic tests have shown the efficacy of using this type of catalyst for the removal of these volatile organic compounds, having a removal rate of 90.60% in the range where the catalyst was studied TiSBA-15(5,0)
iCONVERT: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A study of the pyrolysis and oxidation (phi 0.5-1-2) of methane and methyl formate (phi 0.5) in a laboratory flow reactor (Length = 50 cm, inner diameter = 2.5 cm) has been carried out at 1-4 atm and 300-1300 K temperature range. Exhaust gaseous species analysis was realized using a gas chromatographic system, Varian CP-4900 PRO Mirco-GC, with a TCD detector and using helium as carrier for a Molecular Sieve 5Å column and nitrogen for a COX column, whose temperatures and pressures were respectively of 65°C and 150kPa. Model simulations using NTUA [1], Fisher et al. [12], Grana [13] and Dooley [14] kinetic mechanisms have been performed with CHEMKIN. The work provides a basis for further development and optimization of existing detailed chemical kinetic schemes.
Resumo:
Rhogocytes, also termed ‘pore cells’, exist free in the hemolymph or embedded in the connective tissue of different body parts of molluscs, notably gastropods. These unique cells can be round, elongated or irregularly shaped, and up to 30 μm in diameter. Their hallmark is the so-called slit apparatus: i.e. pocket-like invaginations of the plasma membrane creating extracellular lacunae, bridged by cytoplasmic bars. These bars form distinctive slits of ca. 20 nm width. A slit diaphragm composed of proteins establishes a molecular sieve with holes of 20 x 20 nm. Different functions have been assigned to this special molluscan cell type, notably biosynthesis of the hemolymph respiratory protein hemocyanin. It has further been proposed, but not proven, that in the case of red-blooded snail species rhogocytes might synthesize the hemoglobin. However, the secretion pathway of these hemolymph proteins, and the functional role of the enigmatic slit apparatus remained unclear. Additionally proposed functions of rhogocytes, such as heavy metal detoxification or hemolymph protein degradation, are also not well studied. This work provides more detailed electron microscopical, histological and immunobiochemical information on the structure and function of rhogocytes of the freshwater snails Biomphalaria glabrata and Lymnaea stagnalis. By in situ hybridization on mantle tissues, it proves that B. glabrata rhogocytes synthesize hemoglobin and L. stagnalis rhogocytes synthesize hemocyanin. Hemocyanin is present, in endoplasmic reticulum lacunae and in vesicles, as individual molecules or pseudo-crystalline arrays. The first 3D reconstructions of rhogocytes are provided by means of electron tomography and show unprecedented details of the slit apparatus. A highly dense material in the cytoplasmic bars close to the diaphragmatic slits was shown, by immunogold labeling, to contain actin. By immunofluorescence microscopy, the protein nephrin was localized at the periphery of rhogocytes. The presence of both proteins in the slit apparatus supports the previous hypothesis, hitherto solely based on similarities of the ultrastructure, that the molluscan rhogocytes are phylogenetically related to mammalian podocytes and insect nephrocytes. A possible secretion pathway of respiratory proteins that includes a transfer mechanism of vesicles through the diaphragmatic slits is proposed and discussed. We also studied, by electron microscopy, the reaction of rhogocytes in situ to two forms of animal stress: deprivation of food and cadmium contamination of the tank water. Significant cellular reactions to both stressors were observed and documented. Notably, the slit apparatus surface and the number of electron-dense cytoplasmic vesicles increased in response to cadmium stress. Food deprivation led to an increase in hemocyanin production. These observations are also discussed in the framework of using such animals as potential environmental biomarkers.