992 resultados para model averaging


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The statistics of cloud-base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in Central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that, as expected, AROME significantly underestimates the variability of vertical velocity at cloud-base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4-6 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km) explains 70-80% of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 4 times the physically-defined grid spacing. The results illustrate the need for special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of anthropogenic climate change can be improved by recognising the seasonality in the climate change response. This is demonstrated for the North Atlantic jet (zonal wind at 850 hPa, U850) and European precipitation responses projected by the CMIP5 climate models. The U850 future response is characterised by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November-April, and a poleward shift in May-October. Under the RCP8.5 scenario, the multi-model mean response in U850 in these two extended seasonal means emerges by 2035-2040 for the lower--latitude features and by 2050-2070 for the higher--latitude features, relative to the 1960-1990 climate. This is 5-15 years earlier than when evaluated in the traditional meteorological seasons (December--February, June--August), and it results from an increase in the signal to noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal to noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10-20 years. Furthermore, some of the regional responses, such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter, are projected to emerge by 2020-2025, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative estimates of time-averaging in marine shell accumulations available to date are limited primarily to aragonitic mollusk shells. We assessed time-averaging in Holocene assemblages of calcitic brachiopod shells by direct dating of individual specimens of the terebratulid brachiopod Bouchardia rosea. The data were collected from exceptional (brachiopod-rich) shell assemblages, occurring surficially on a tropical mixed carbonate-siliciclastic shelf (the Southeast Brazilian Bight, SW Atlantic), a setting that provides a good climatic and environmental analog for many Paleozoic brachiopod shell beds of North America and Europe. A total of 82 individual brachiopod shells, collected from four shallow (5-25 m) nearshore (<2.5 km from the shore) localities, were dated by using amino acid racemization (D-alloisoleucine/L-isoleucine value) calibrated with five AMS-radiocarbon dates (r(2) = 0.933). This is the first study to demonstrate that amino acid racemization methods can provide accurate and precise ages for individual shells of calcitic brachiopods.The dated shells vary in age from modern to 3000 years, with a standard deviation of 690 years. The age distribution is strongly right-skewed: the young shells dominate the dated specimens and older shells are increasingly less common. However, the four localities display significant differences in the range of time-averaging and the form of the age distribution. The dated shells vary notably in the quality of preservation, but there is no significant correlation between taphonomic condition and age, either for individual shells or at assemblage level.These results demonstrate that fossil brachiopods may show considerable time-averaging, but the scale and nature of that mixing may vary greatly among sites. Moreover, taphonomic condition is not a reliable indicator of pre-burial history of individual brachiopod shells or the scale of temporal mixing within the entire assemblage. The results obtained for brachiopods are strikingly similar to results previously documented for mollusks and suggest that differences in mineralogy and shell microstructure are unlikely to be the primary factors controlling the nature and scale of time-averaging. Environmental factors and local fluctuations in populations of shell-producing organisms are more likely to be the principal determinants of time-averaging in marine benthic shelly assemblages. The long-term survival of brachiopod shells is incongruent with the rapid shell destruction observed in taphonomic experiments. The results support the taphonomic model that shells remain protected below (but perhaps near) the surface through their early taphonomic history. They may be brought back up to the surface intermittently by bioturbation and physical reworking, but only for short periods of time. This model explains the striking similarities in time-averaging among different types of organisms and the lack of correlation between time-since-death and shell taphonomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a Solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The cost of uniqueness is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, ill turn, can lead to erroneous predictions made by a model that is ostensibly well calibrated. Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post-calibration parameter covariance matrices shows that the latter often possess a much smaller spectral bandwidth than the former. It is also demonstrated that, as all inevitable consequence of the fact that a calibrated model cannot replicate every detail of the true system, model-to-measurement residuals can show a high degree of spatial correlation, a fact which must be taken into account when assessing these residuals either qualitatively, or quantitatively in the exploration of model predictive uncertainty. These principles are demonstrated using a synthetic case in which spatial parameter definition is based oil pilot points, and calibration is Implemented using both zones of piecewise constancy and constrained minimization regularization. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating further information into the ordered weighted averaging (OWA) operator weights is investigated in this paper. We first prove that for a constant orness the minimax disparity model [13] has unique optimal solution while the modified minimax disparity model [16] has alternative optimal OWA weights. Multiple optimal solutions in modified minimax disparity model provide us opportunity to define a parametric aggregation OWA which gives flexibility to decision makers in the process of aggregation and selecting the best alternative. Finally, the usefulness of the proposed parametric aggregation method is illustrated with an application in metasearch engine. © 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the Ordered Weighted Averaging (OWA) operator weights is important in decision making applications. Several approaches have been proposed in the literature to obtain the associated weights. This paper provides an alternative disparity model to identify the OWA operator weights. The proposed mathematical model extends the existing disparity approaches by minimizing the sum of the deviation between two distinct OWA weights. The proposed disparity model can be used for a preference ranking aggregation. A numerical example in preference ranking and an application in search engines prove the usefulness of the generated OWA weights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.