988 resultados para mitochondrial RNA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have shown the presence of liver mitochondrial dysfunction during sepsis. TLR3 recognizes viral double-stranded RNA and host endogenous cellular mRNA released from damaged cells. TLR3 ligand amplifies the systemic hyperinflammatory response observed during sepsis and in sepsis RNA escaping from damaged tissues/cells may serve as an endogenous ligand for TLR3 thereby modulating immune responses. This study addressed the hypothesis that TLR3 might regulate mitochondrial function in cultured human hepatocytes. HepG2 cells were exposed to TLR-3 ligand (dsRNA--polyinosine-polycytidylic acid; Poly I:C) and mitochondrial respiration was measured. Poly I:C induced a reduction in maximal mitochondrial respiration of human hepatocytes which was prevented partially by preincubation with cyclosporine A (a mitochondrial permeability transition pore-opening inhibitor). Poly-I:C induced activation of NF-κB, and the mitochondrial dysfunction was accompanied by caspase-8 but not caspase-3 activation and by no major alterations in cellular or mitochondrial ultrastructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA editing in kinetoplastid protozoa is a post-transcriptional process of uridine insertion or deletion in mitochondrial mRNAs. The process involves two RNA species, the pre-edited mRNA and in most cases a trans-acting guide RNA (gRNA). Sequences within gRNAs define the position and extend of mRNA editing. Both mRNAs and gRNAs are encoded by mitochondrial genes in the kinetoplast DNA (kDNA), which consists of thousands of small circular DNA molecules, called minicircles, encoding thousands of gRNAs, catenated together and with a few mRNA encoding larger circles, the maxicircles, to form a huge DNA network. Editing has been shown to result in translatable mRNAs of bona fide mitochondrial genes as well as novel alternatively edited transcripts that are involved in the maintenance of the kDNA itself. RNA editing occurs within large protein-RNA complexes, editosomes, containing gRNA, preedited and partially edited mRNAs and also structural and catalytically active proteins. Editosomes are diverse in both RNA and protein composition and undergoe structural remodeling during the maturation. The compositional and structural diversity of editosomes further underscores the complexity of the RNA editing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND ; AIMS: Hints, histidine triad nucleotide-binding proteins, are adenosine monophosphate-lysine hydrolases of uncertain biological function. Here we report the characterization of human Hint2. METHODS: Tissue distribution was determined by real-time quantitative polymerase chain reaction and immunoblotting, cellular localization by immunocytochemistry, and transfection with green fluorescent protein constructs. Enzymatic activities for protein kinase C and adenosine phosphoramidase in the presence of Hint2 were measured. HepG2 cell lines with Hint2 overexpressed or knocked down were established. Apoptosis was assessed by immunoblotting for caspases and by flow cytometry. Tumor growth was measured in SCID mice. Expression in human tumors was investigated by microarrays. RESULTS: Hint2 was predominantly expressed in liver and pancreas. Hint2 was localized in mitochondria. Hint2 hydrolyzed adenosine monophosphate linked to an amino group (AMP-pNA; k(cat):0.0223 s(-1); Km:128 micromol/L). Exposed to apoptotic stress, fewer HepG2 cells overexpressing Hint2 remained viable (32.2 +/- 0.6% vs 57.7 +/- 4.6%), and more cells displayed changes of the mitochondrial membrane potential (87.8 +/- 2.35 vs 49.7 +/- 1.6%) with more cleaved caspases than control cells. The opposite was observed in HepG2 cells with knockdown expression of Hint2. Subcutaneous injection of HepG2 cells overexpressing Hint2 in SCID mice resulted in smaller tumors (0.32 +/- 0.13 g vs 0.85 +/- 0.35 g). Microarray analyses revealed that HINT2 messenger RNA is downregulated in hepatocellular carcinomas (-0.42 +/- 0.58 log2 vs -0.11 +/- 0.28 log2). Low abundance of HINT2 messenger RNA was associated with poor survival. CONCLUSION: Hint2 defines a novel class of mitochondrial apoptotic sensitizers down-regulated in hepatocellular carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous results indicated that translation of four mitochondrion-encoded genes and one nucleus-encoded gene (COX4) is repressed in mutants (pgs1Delta) of Saccharomyces cerevisiae lacking phosphatidylglycerol and cardiolipin. COX4 translation was studied here using a mitochondrially targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5' and 3' untranslated regions (UTRs). Lack of mtGFP expression independent of carbon source and strain background was established to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but was rather caused directly by the lack of phosphatidylglycerol and cardiolipin in mitochondrial membranes. Reintroduction of a functional PGS1 gene under control of the ADH1 promoter restored phosphatidylglycerol synthesis and expression of mtGFP. Deletion analysis of the 5' UTR(COX4) revealed the presence of a 50-nucleotide fragment with two stem-loops as a cis-element inhibiting COX4 translation. Binding of a protein factor(s) specifically to this sequence was observed with cytoplasm from pgs1Delta but not PGS1 cells. Using HIS3 and lacZ as reporters, extragenic spontaneous recessive mutations that allowed expression of His3p and beta-galactosidase were isolated, which appeared to be loss-of-function mutations, suggesting that the genes mutated may encode the trans factors that bind to the cis element in pgs1Delta cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes — believed to be universally conserved in all eukaryotes — reside in the MOM to orchestrate and control metabolite exchange, lipid metabolism and uptake of biopolymers such as protein and RNA. African trypanosomes are the causative agent of the sleeping sickness in humans. The parasites are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. Trypanosomes have unique mitochondrial biology that concerns their mitochondrial metabolism and their unusual mitochondrial morphology that differs to great extent between life stages. Another striking feature is the organization of the mitochondrial genome that does not encode any tRNA genes, thus all tRNAs needed for mitochondrial translation have to be imported. However, the MOM of T. brucei is essentially unchartered territory. It lacks a canonical protein import machinery and facilitation of tRNA translocation remains completely elusive. Using biochemical fractionation and label-free quantitative mass spectrometry for correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence. This enabled us to identify a highly unusual, potentially archaic protein import machinery that might also transport tRNAs. Moreover, two-thirds of the identified polypeptides present on the MOM have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many organisms, polarity of the oocyte is established post-transcriptionally via subcellular RNA localization. Many RNAs are localized during oogenesis in Xenopus laevis, including Xlsirts ( Xenopus laevis short interspersed repeat transcripts) [Kloc, 1993]. Xlsirts constitute a large family defined by highly homologous repeat units 79–81 nucleotides in length. Endogenous Xlsirt RNAs use the METRO (Message Transport Organizer) pathway of localization, where RNAs are transported from the nucleus to the mitochondrial cloud in stage I oocytes. Secondly, RNAs anchor at the vegetal pole in stage II oocytes. Exogenous Xlsirt RNAs can also utilize the Late pathway of localization, which involves localization to the vegetal cortex during stage III of oogenesis and results in RNAs anchored in the cortex of the entire vegetal hemisphere. ^ The Xlsirts localization signal is contained within the repeat region. This study was designed to test the hypothesis that there are cis -acting localization elements in Xlsirts, and that higher order structure plays a role. Results of experiments on Xlsirt P11, a 1700 basepair (bp) family member, led to the conclusion that a 137-bp fragment of the repetitive region is necessary and sufficient for METRO and Late pathway localization. This analysis definitively demonstrates that the Xlsirt localization signal for the METRO and Late pathways reside within the repetitive region and not within the flanking regions. Analysis of Xlsirt linker scanning mutations revealed two METRO-pathway specific subelements, and one Late-pathway specific subelement. Functional, computer, and biochemical evidence relates the higher order structure of this element to its ability to function as a localization element. ^ Xlsirt 137 is 99% identical to the Xlsirt consensus sequence identified in this study, suggesting that it is the localization element for all localized Xlsirt family members. The repeat unit was reframed based on function, rather than arbitrarily based on sequence. This work supports the hypothesis presented in 1981 by George Spohr, who originally isolated the Xlsirts, which stated that the highly conserved repetitive elements must be constrained from variability due to some unknown function of the repeats themselves. These studies shed light on the mechanism of RNA localization, linking structure and function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some group I introns self-splice in vitro, but almost all are thought to be assisted by proteins in vivo. Mutational analysis has shown that the splicing of certain group I introns depends upon a maturase protein encoded by the intron itself. However the effect of a protein on splicing can be indirect. We now provide evidence that a mitochondrial intron-encoded protein from Aspergillus nidulans directly facilitates splicing in vitro. This demonstrates that a maturase is an RNA splicing protein. The protein-assisted reaction is as fast as that of any other known group I intron. Interestingly the protein is also a DNA endonuclease, an activity required for intron mobilization. Mobile elements frequently encode proteins that promote their propagation. Intron-encoded proteins that also assist RNA splicing would facilitate both the transposition and horizontal transmission of introns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protoporphyrinogen IX oxidase is the last enzyme in the common pathway of heme and chlorophyll synthesis and provides precursor for the mitochondrial and plastidic heme synthesis and the predominant chlorophyll synthesis in plastids. We cloned two different, full-length tobacco cDNA sequences by complementation of the protoporphyrin-IX-accumulating Escherichia coli hemG mutant from heme auxotrophy. The two sequences show similarity to the recently published Arabidopsis PPOX, Bacillus subtilis hemY, and to mammalian sequences encoding protoporphyrinogen IX oxidase. One cDNA sequence encodes a 548-amino acid residues protein with a putative transit sequence of 50 amino acid residues, and the second cDNA encodes a protein of 504 amino acid residues. Both deduced protein sequences share 27.2% identical amino acid residues. The first in vitro translated protoporphyrinogen IX oxidase could be translocated to plastids, and the approximately 53-kDa mature protein was detected in stroma and membrane fraction. The second enzyme was targeted to mitochondria without any detectable reduction in size. Localization of both enzymes in subcellular fractions was immunologically confirmed. Steady-state RNA analysis indicates an almost synchronous expression of both genes during tobacco plant development, greening of young seedlings, and diurnal and circadian growth. The mature plastidal and the mitochondrial isoenzyme were overexpressed in E. coli. Bacterial extracts containing the recombinant mitochondrial enzyme exhibit high protoporphyrinogen IX oxidase activity relative to control strains, whereas the plastidal enzyme could only be expressed as an inactive peptide. The data presented confirm a compartmentalized pathway of tetrapyrrole synthesis with protoporphyrinogen IX oxidase in plastids and mitochondria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of the sequence of the mitochondrial genome in the flowering plant Arabidopsis thaliana, RNA editing events were systematically investigated in the respective RNA population. A total of 456 C to U, but no U to C, conversions were identified exclusively in mRNAs, 441 in ORFs, 8 in introns, and 7 in leader and trailer sequences. No RNA editing was seen in any of the rRNAs or in several tRNAs investigated for potential mismatch corrections. RNA editing affects individual coding regions with frequencies varying between 0 and 18.9% of the codons. The predominance of RNA editing events in the first two codon positions is not related to translational decoding, because it is not correlated with codon usage. As a general effect, RNA editing increases the hydrophobicity of the coded mitochondrial proteins. Concerning the selection of RNA editing sites, little significant nucleotide preference is observed in their vicinity in comparison to unedited C residues. This sequence bias is, per se, not sufficient to specify individual C nucleotides in the total RNA population in Arabidopsis mitochondria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trichomonads are anaerobic flagellated protists that, based on analyses of ribosomal RNA sequences, represent one of the earliest branching lineages among the eukaryotes. The absence of mitochondria in these organisms coupled with their deep phylogenetic position has prompted several authors to suggest that trichomonads, along with other deeply-branching amitochondriate protist groups, diverged from the main eukaryotic lineage prior to the endosymbiotic origin of mitochondria. In this report we describe the presence of a gene in Trichomonas vaginalis specifically related to mitochondrial chaperonin 60 (cpn60). A recent study indicates that a protein immunologically related to cpn60 is located in trichomonad hydrogenosomes. Together, these data provide evidence that ancestors of trichomonads perhaps harbored the endosymbiotic progenitors of mitochondria, but that these evolved into hydrogenosomes early in trichomonad evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M2 is a double-stranded RNA (dsRNA) element occurring in the hypovirulent isolate Rhs 1A1 of the plant pathogenic basidiomycete Rhizoctonia solani. Rhs 1A1 originated as a sector of the virulent field isolate Rhs 1AP, which contains no detectable amount of the M2 dsRNA. The complete sequence (3,570 bp) of the M2 dsRNA has been determined. A 6.9-kbp segment of total DNA from either Rhs 1A1 or Rhs 1AP hybridizes with an M2-specific cDNA probe. The sequences of M2 dsRNA and of PCR products generated from Rhs 1A1 total DNA were found to be identical. Thus this report describes a fungal host containing full-length DNA copies of a dsRNA element. A major portion of the M2 dsRNA is located in the cytoplasm, whereas a smaller amount is found in mitochondria. Based on either the universal or the mitochondrial genetic code of filamentous fungi, one strand of M2 encodes a putative protein of 754 amino acids. The resulting polypeptide has all four motifs of a dsRNA viral RNA-dependent RNA polymerase (RDRP) and is phylogenetically related to the RDRP of a mitochondrial dsRNA associated with hypovirulence in strain NB631 of Cryphonectria parasitica, incitant of chestnut blight. This polypeptide also has significant sequence similarity with two domains of a pentafunctional polypeptide, which catalyzes the five central steps of the shikimate pathway in yeast and filamentous fungi.